亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Molecular mechanics (MM) force fields -- fast, empirical models characterizing the potential energy surface of molecular systems via simple parametric pairwise and valence interactions -- have traditionally relied on labor-intensive, inflexible, and poorly extensible discrete chemical parameter assignment rules using look-up tables for discrete atom or interaction types. Here, we introduce a machine-learned MM force field, espaloma-0.3, where the rule-based discrete atom-typing schemes are replaced with a continuous atom representations using graph neural networks. Trained in an end-to-end differentiable manner directly from a large, diverse quantum chemical dataset of over 1.1M energy and force calculations, espaloma-0.3 covers chemical spaces highly relevant to the broad interest in biomolecular modeling, including small molecules, proteins, and RNA. We show that espaloma-0.3 accurately predicts quantum chemical energies and forces while maintaining stable quantum chemical energy-minimized geometries. It can self-consistently parameterize both protein and ligand, producing highly accurate protein-ligand binding free energy predictions. Capable of fitting new force fields to large quantum chemical datasets with a single GPU-day of training, this approach demonstrates significant promise as a path forward for building systematically more accurate force fields that can be easily extended to new chemical domains of interest. The espaloma-0.3 force field is available for use directly or within OpenMM via the open-source Espaloma package //github.com/choderalab/espaloma, and both the code and datasets for constructing this force field are openly available //github.com/choderalab/refit-espaloma.

相關內容

We study the numerical approximation of multidimensional stochastic differential equations (SDEs) with distributional drift, driven by a fractional Brownian motion. We work under the Catellier-Gubinelli condition for strong well-posedness, which assumes that the regularity of the drift is strictly greater than $1-1/(2H)$, where $H$ is the Hurst parameter of the noise. The focus here is on the case $H<1/2$, allowing the drift $b$ to be a distribution. We compare the solution $X$ of the SDE with drift $b$ and its tamed Euler scheme with mollified drift $b^n$, to obtain an explicit rate of convergence for the strong error. This extends previous results where $b$ was assumed to be a bounded measurable function. In addition, we investigate the limit case when the regularity of the drift is equal to $1-1/(2H)$, and obtain a non-explicit rate of convergence. As a byproduct of this convergence, there exists a strong solution that is pathwise unique in a class of H\"older continuous solutions. The proofs rely on stochastic sewing techniques, especially to deduce new regularising properties of the discrete-time fractional Brownian motion. In the limit case, we introduce a critical Gr\"onwall-type lemma to quantify the error. We also present several examples and numerical simulations that illustrate our results.

Mean-field molecular dynamics based on path integrals is used to approximate canonical quantum observables for particle systems consisting of nuclei and electrons. A computational bottleneck is the sampling from the Gibbs density of the electron operator, which due to the fermion sign problem has a computational complexity that scales exponentially with the number of electrons. In this work we construct an algorithm that approximates the mean-field Hamiltonian by path integrals for fermions. The algorithm is based on the determinant of a matrix with components based on Brownian bridges connecting permuted electron coordinates. The computational work for $n$ electrons is $\mathcal O(n^3)$, which reduces the computational complexity associated with the fermion sign problem. We analyze a bias resulting from this approximation and provide a computational error indicator. It remains to rigorously explain the surprisingly high accuracy.

The aromatic bicomplex is an algebraic tool based on aromatic Butcher trees and used in particular for the explicit description of volume-preserving affine-equivariant numerical integrators. The present work defines new tools inspired from variational calculus such as the Lie derivative, different concepts of symmetries, and Noether's theory in the context of aromatic forests. The approach allows to draw a correspondence between aromatic volume-preserving methods and symmetries on the Euler-Lagrange complex, to write Noether's theorem in the aromatic context, and to describe the aromatic B-series of volume-preserving methods explicitly with the Lie derivative.

We present and analyze a discontinuous Galerkin method for the numerical modeling of the non-linear fully-coupled thermo-hydro-mechanic problem. We propose a high-order symmetric weighted interior penalty scheme that supports general polytopal grids and is robust with respect to strong heteorgeneities in the model coefficients. We focus on the treatment of the non-linear convective transport term in the energy conservation equation and we propose suitable stabilization techniques that make the scheme robust for advection-dominated regimes. The stability analysis of the problem and the convergence of the fixed-point linearization strategy are addressed theoretically under mild requirements on the problem's data. A complete set of numerical simulations is presented in order to assess the convergence and robustness properties of the proposed method.

Designing efficient and high-accuracy numerical methods for complex dynamic incompressible magnetohydrodynamics (MHD) equations remains a challenging problem in various analysis and design tasks. This is mainly due to the nonlinear coupling of the magnetic and velocity fields occurring with convection and Lorentz forces, and multiple physical constraints, which will lead to the limitations of numerical computation. In this paper, we develop the MHDnet as a physics-preserving learning approach to solve MHD problems, where three different mathematical formulations are considered and named $B$ formulation, $A_1$ formulation, and $A_2$ formulation. Then the formulations are embedded into the MHDnet that can preserve the underlying physical properties and divergence-free condition. Moreover, MHDnet is designed by the multi-modes feature merging with multiscale neural network architecture, which can accelerate the convergence of the neural networks (NN) by alleviating the interaction of magnetic fluid coupling across different frequency modes. Furthermore, the pressure fields of three formulations, as the hidden state, can be obtained without extra data and computational cost. Several numerical experiments are presented to demonstrate the performance of the proposed MHDnet compared with different NN architectures and numerical formulations.

In this paper, we propose a robust low-order stabilization-free virtual element method on quadrilateral meshes for linear elasticity that is based on the stress-hybrid principle. We refer to this approach as the Stress-Hybrid Virtual Element Method (SH-VEM). In this method, the Hellinger$-$Reissner variational principle is adopted, wherein both the equilibrium equations and the strain-displacement relations are variationally enforced. We consider small-strain deformations of linear elastic solids in the compressible and near-incompressible regimes over quadrilateral (convex and nonconvex) meshes. Within an element, the displacement field is approximated as a linear combination of canonical shape functions that are $\textit{virtual}$. The stress field, similar to the stress-hybrid finite element method of Pian and Sumihara, is represented using a linear combination of symmetric tensor polynomials. A 5-parameter expansion of the stress field is used in each element, with stress transformation equations applied on distorted quadrilaterals. In the variational statement of the strain-displacement relations, the divergence theorem is invoked to express the stress coefficients in terms of the nodal displacements. This results in a formulation with solely the nodal displacements as unknowns. Numerical results are presented for several benchmark problems from linear elasticity. We show that SH-VEM is free of volumetric and shear locking, and it converges optimally in the $L^2$ norm and energy seminorm of the displacement field, and in the $L^2$ norm of the hydrostatic stress.

Flexoelectricity - the generation of electric field in response to a strain gradient - is a universal electromechanical coupling, dominant only at small scales due to its requirement of high strain gradients. This phenomenon is governed by a set of coupled fourth-order partial differential equations (PDEs), which require $C^1$ continuity of the basis in finite element methods for the numerical solution. While Isogeometric analysis (IGA) has been proven to meet this continuity requirement due to its higher-order B-spline basis functions, it is limited to simple geometries that can be discretized with a single IGA patch. For the domains, e.g., architected materials, requiring more than one patch for discretization IGA faces the challenge of $C^0$ continuity across the patch boundaries. Here we present a discontinuous Galerkin method-based isogeometric analysis framework, capable of solving fourth-order PDEs of flexoelectricity in the domain of truss-based architected materials. An interior penalty-based stabilization is implemented to ensure the stability of the solution. The present formulation is advantageous over the analogous finite element methods since it only requires the computation of interior boundary contributions on the boundaries of patches. As each strut can be modeled with only two trapezoid patches, the number of $C^0$ continuous boundaries is largely reduced. Further, we consider four unique unit cells to construct the truss lattices and analyze their flexoelectric response. The truss lattices show a higher magnitude of flexoelectricity compared to the solid beam, as well as retain this superior electromechanical response with the increasing size of the structure. These results indicate the potential of architected materials to scale up the flexoelectricity to larger scales, towards achieving universal electromechanical response in meso/macro scale dielectric materials.

Neural operators have been explored as surrogate models for simulating physical systems to overcome the limitations of traditional partial differential equation (PDE) solvers. However, most existing operator learning methods assume that the data originate from a single physical mechanism, limiting their applicability and performance in more realistic scenarios. To this end, we propose Physical Invariant Attention Neural Operator (PIANO) to decipher and integrate the physical invariants (PI) for operator learning from the PDE series with various physical mechanisms. PIANO employs self-supervised learning to extract physical knowledge and attention mechanisms to integrate them into dynamic convolutional layers. Compared to existing techniques, PIANO can reduce the relative error by 13.6\%-82.2\% on PDE forecasting tasks across varying coefficients, forces, or boundary conditions. Additionally, varied downstream tasks reveal that the PI embeddings deciphered by PIANO align well with the underlying invariants in the PDE systems, verifying the physical significance of PIANO. The source code will be publicly available at: //github.com/optray/PIANO.

Common regularization algorithms for linear regression, such as LASSO and Ridge regression, rely on a regularization hyperparameter that balances the tradeoff between minimizing the fitting error and the norm of the learned model coefficients. As this hyperparameter is scalar, it can be easily selected via random or grid search optimizing a cross-validation criterion. However, using a scalar hyperparameter limits the algorithm's flexibility and potential for better generalization. In this paper, we address the problem of linear regression with l2-regularization, where a different regularization hyperparameter is associated with each input variable. We optimize these hyperparameters using a gradient-based approach, wherein the gradient of a cross-validation criterion with respect to the regularization hyperparameters is computed analytically through matrix differential calculus. Additionally, we introduce two strategies tailored for sparse model learning problems aiming at reducing the risk of overfitting to the validation data. Numerical examples demonstrate that our multi-hyperparameter regularization approach outperforms LASSO, Ridge, and Elastic Net regression. Moreover, the analytical computation of the gradient proves to be more efficient in terms of computational time compared to automatic differentiation, especially when handling a large number of input variables. Application to the identification of over-parameterized Linear Parameter-Varying models is also presented.

We consider systems of nonlinear magnetostatics and quasistatics that typically arise in the modeling and simulation of electric machines. The nonlinear problems, eventually obtained after time discretization, are usually solved by employing a vector potential formulation. In the relevant two-dimensional setting, a discretization can be obtained by H1-conforming finite elements. We here consider an alternative formulation based on the H-field which leads to a nonlinear saddlepoint problem. After commenting on the unique solvability, we study the numerical approximation by H(curl)-conforming finite elements and present the main convergence results. A particular focus is put on the efficient solution of the linearized systems arising in every step of the nonlinear Newton solver. Via hybridization, the linearized saddlepoint systems can be transformed into linear elliptic problems, which can be solved with similar computational complexity as those arising in the vector or scalar potential formulation. In summary, we can thus claim that the mixed finite element approach based on the $H$-field can be considered a competitive alternative to the standard vector or scalar potential formulations for the solution of problems in nonlinear magneto-quasistatics.

北京阿比特科技有限公司