The understanding of the convoluted evolution of infant brain networks during the first postnatal year is pivotal for identifying the dynamics of early brain connectivity development. Existing deep learning solutions suffer from three major limitations. First, they cannot generalize to multi-trajectory prediction tasks, where each graph trajectory corresponds to a particular imaging modality or connectivity type (e.g., T1-w MRI). Second, existing models require extensive training datasets to achieve satisfactory performance which are often challenging to obtain. Third, they do not efficiently utilize incomplete time series data. To address these limitations, we introduce FedGmTE-Net++, a federated graph-based multi-trajectory evolution network. Using the power of federation, we aggregate local learnings among diverse hospitals with limited datasets. As a result, we enhance the performance of each hospital's local generative model, while preserving data privacy. The three key innovations of FedGmTE-Net++ are: (i) presenting the first federated learning framework specifically designed for brain multi-trajectory evolution prediction in a data-scarce environment, (ii) incorporating an auxiliary regularizer in the local objective function to exploit all the longitudinal brain connectivity within the evolution trajectory and maximize data utilization, (iii) introducing a two-step imputation process, comprising a preliminary KNN-based precompletion followed by an imputation refinement step that employs regressors to improve similarity scores and refine imputations. Our comprehensive experimental results showed the outperformance of FedGmTE-Net++ in brain multi-trajectory prediction from a single baseline graph in comparison with benchmark methods.
Bayesian neural networks (BNNs) have recently gained popularity due to their ability to quantify model uncertainty. However, specifying a prior for BNNs that captures relevant domain knowledge is often extremely challenging. In this work, we propose a framework for integrating general forms of domain knowledge (i.e., any knowledge that can be represented by a loss function) into a BNN prior through variational inference, while enabling computationally efficient posterior inference and sampling. Specifically, our approach results in a prior over neural network weights that assigns high probability mass to models that better align with our domain knowledge, leading to posterior samples that also exhibit this behavior. We show that BNNs using our proposed domain knowledge priors outperform those with standard priors (e.g., isotropic Gaussian, Gaussian process), successfully incorporating diverse types of prior information such as fairness, physics rules, and healthcare knowledge and achieving better predictive performance. We also present techniques for transferring the learned priors across different model architectures, demonstrating their broad utility across various settings.
Resource-constrained robotic platforms are particularly useful for tasks that require low-cost hardware alternatives due to the risk of losing the robot, like in search-and-rescue applications, or the need for a large number of devices, like in swarm robotics. For this reason, it is crucial to find mechanisms for adapting reinforcement learning techniques to the constraints imposed by lower computational power and smaller memory capacities of these ultra low-cost robotic platforms. We try to address this need by proposing a method for making imitation learning deployable onto resource-constrained robotic platforms. Here we cast the imitation learning problem as a conditional sequence modeling task and we train a decision transformer using expert demonstrations augmented with a custom reward. Then, we compress the resulting generative model using software optimization schemes, including quantization and pruning. We test our method in simulation using Isaac Gym, a realistic physics simulation environment designed for reinforcement learning. We empirically demonstrate that our method achieves natural looking gaits for Bittle, a resource-constrained quadruped robot. We also run multiple simulations to show the effects of pruning and quantization on the performance of the model. Our results show that quantization (down to 4 bits) and pruning reduce model size by around 30\% while maintaining a competitive reward, making the model deployable in a resource-constrained system.
High-quality psychological counseling is crucial for mental health worldwide, and timely evaluation is vital for ensuring its effectiveness. However, obtaining professional evaluation for each counseling session is expensive and challenging. Existing methods that rely on self or third-party manual reports to assess the quality of counseling suffer from subjective biases and limitations of time-consuming. To address above challenges, this paper proposes an innovative and efficient automatic approach using large language models (LLMs) to evaluate the working alliance in counseling conversations. We collected a comprehensive counseling dataset and conducted multiple third-party evaluations based on therapeutic relationship theory. Our LLM-based evaluation, combined with our guidelines, shows high agreement with human evaluations and provides valuable insights into counseling scripts. This highlights the potential of LLMs as supervisory tools for psychotherapists. By integrating LLMs into the evaluation process, our approach offers a cost-effective and dependable means of assessing counseling quality, enhancing overall effectiveness.
Empathetic response generation is increasingly significant in AI, necessitating nuanced emotional and cognitive understanding coupled with articulate response expression. Current large language models (LLMs) excel in response expression; however, they lack the ability to deeply understand emotional and cognitive nuances, particularly in pinpointing fine-grained emotions and their triggers. Conversely, small-scale empathetic models (SEMs) offer strength in fine-grained emotion detection and detailed emotion cause identification. To harness the complementary strengths of both LLMs and SEMs, we introduce a Hybrid Empathetic Framework (HEF). HEF regards SEMs as flexible plugins to improve LLM's nuanced emotional and cognitive understanding. Regarding emotional understanding, HEF implements a two-stage emotion prediction strategy, encouraging LLMs to prioritize primary emotions emphasized by SEMs, followed by other categories, substantially alleviates the difficulties for LLMs in fine-grained emotion detection. Regarding cognitive understanding, HEF employs an emotion cause perception strategy, prompting LLMs to focus on crucial emotion-eliciting words identified by SEMs, thus boosting LLMs' capabilities in identifying emotion causes. This collaborative approach enables LLMs to discern emotions more precisely and formulate empathetic responses. We validate HEF on the Empathetic-Dialogue dataset, and the findings indicate that our framework enhances the refined understanding of LLMs and their ability to convey empathetic responses.
A significant bottleneck in applying current reinforcement learning algorithms to real-world scenarios is the need to reset the environment between every episode. This reset process demands substantial human intervention, making it difficult for the agent to learn continuously and autonomously. Several recent works have introduced autonomous reinforcement learning (ARL) algorithms that generate curricula for jointly training reset and forward policies. While their curricula can reduce the number of required manual resets by taking into account the agent's learning progress, they rely on task-specific knowledge, such as predefined initial states or reset reward functions. In this paper, we propose a novel ARL algorithm that can generate a curriculum adaptive to the agent's learning progress without task-specific knowledge. Our curriculum empowers the agent to autonomously reset to diverse and informative initial states. To achieve this, we introduce a success discriminator that estimates the success probability from each initial state when the agent follows the forward policy. The success discriminator is trained with relabeled transitions in a self-supervised manner. Our experimental results demonstrate that our ARL algorithm can generate an adaptive curriculum and enable the agent to efficiently bootstrap to solve sparse-reward maze navigation and manipulation tasks, outperforming baselines with significantly fewer manual resets.
One principal approach for illuminating a black-box neural network is feature attribution, i.e. identifying the importance of input features for the network's prediction. The predictive information of features is recently proposed as a proxy for the measure of their importance. So far, the predictive information is only identified for latent features by placing an information bottleneck within the network. We propose a method to identify features with predictive information in the input domain. The method results in fine-grained identification of input features' information and is agnostic to network architecture. The core idea of our method is leveraging a bottleneck on the input that only lets input features associated with predictive latent features pass through. We compare our method with several feature attribution methods using mainstream feature attribution evaluation experiments. The code is publicly available.
A community reveals the features and connections of its members that are different from those in other communities in a network. Detecting communities is of great significance in network analysis. Despite the classical spectral clustering and statistical inference methods, we notice a significant development of deep learning techniques for community detection in recent years with their advantages in handling high dimensional network data. Hence, a comprehensive overview of community detection's latest progress through deep learning is timely to both academics and practitioners. This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods, including deep learning-based models upon deep neural networks, deep nonnegative matrix factorization and deep sparse filtering. The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders. The survey also summarizes the popular benchmark data sets, model evaluation metrics, and open-source implementations to address experimentation settings. We then discuss the practical applications of community detection in various domains and point to implementation scenarios. Finally, we outline future directions by suggesting challenging topics in this fast-growing deep learning field.
Graph neural networks (GNNs) have emerged as a powerful paradigm for embedding-based entity alignment due to their capability of identifying isomorphic subgraphs. However, in real knowledge graphs (KGs), the counterpart entities usually have non-isomorphic neighborhood structures, which easily causes GNNs to yield different representations for them. To tackle this problem, we propose a new KG alignment network, namely AliNet, aiming at mitigating the non-isomorphism of neighborhood structures in an end-to-end manner. As the direct neighbors of counterpart entities are usually dissimilar due to the schema heterogeneity, AliNet introduces distant neighbors to expand the overlap between their neighborhood structures. It employs an attention mechanism to highlight helpful distant neighbors and reduce noises. Then, it controls the aggregation of both direct and distant neighborhood information using a gating mechanism. We further propose a relation loss to refine entity representations. We perform thorough experiments with detailed ablation studies and analyses on five entity alignment datasets, demonstrating the effectiveness of AliNet.
Pre-trained deep neural network language models such as ELMo, GPT, BERT and XLNet have recently achieved state-of-the-art performance on a variety of language understanding tasks. However, their size makes them impractical for a number of scenarios, especially on mobile and edge devices. In particular, the input word embedding matrix accounts for a significant proportion of the model's memory footprint, due to the large input vocabulary and embedding dimensions. Knowledge distillation techniques have had success at compressing large neural network models, but they are ineffective at yielding student models with vocabularies different from the original teacher models. We introduce a novel knowledge distillation technique for training a student model with a significantly smaller vocabulary as well as lower embedding and hidden state dimensions. Specifically, we employ a dual-training mechanism that trains the teacher and student models simultaneously to obtain optimal word embeddings for the student vocabulary. We combine this approach with learning shared projection matrices that transfer layer-wise knowledge from the teacher model to the student model. Our method is able to compress the BERT_BASE model by more than 60x, with only a minor drop in downstream task metrics, resulting in a language model with a footprint of under 7MB. Experimental results also demonstrate higher compression efficiency and accuracy when compared with other state-of-the-art compression techniques.
Automatically creating the description of an image using any natural languages sentence like English is a very challenging task. It requires expertise of both image processing as well as natural language processing. This paper discuss about different available models for image captioning task. We have also discussed about how the advancement in the task of object recognition and machine translation has greatly improved the performance of image captioning model in recent years. In addition to that we have discussed how this model can be implemented. In the end, we have also evaluated the performance of model using standard evaluation matrices.