亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present two approximate counting algorithms with $\widetilde{O}(n^{2-c}/\varepsilon^2)$ running time for some constant $c > 0$ and accuracy $\varepsilon$: (1) for the hard-core model when strong spatial mixing (SSM) is sufficiently fast; (2) for spin systems with SSM on planar graphs with quadratic growth, such as $\mathbb{Z}^2$. The latter algorithm also extends to (not necessarily planar) graphs with polynomial growth, such as $\mathbb{Z}^d$, albeit with a running time of the form $\widetilde{O}(n^2\varepsilon^{-2}/2^{c(\log n)^{1/d}})$ for some constant $c > 0$ and $d$ being the exponent of the polynomial growth. Our technique utilizes Weitz's self-avoiding walk tree (STOC, 2006) and the recent marginal sampler of Anand and Jerrum (SIAM J. Comput., 2022).

相關內容

第26屆SPIN研討會旨在將對軟件分析和軟件模型自動化工具技術感興趣的研究人員和實踐者聚集在一起,以進行驗證和確認。研討會特別關注并發軟件,但不排除對順序軟件的分析。提交的資料包括理論結果、新算法、工具開發和經驗評估。官網鏈接: · 代價 · 代價函數 · 相互獨立的 · 極小點 ·
2023 年 8 月 16 日

We give a quantum approximation scheme (i.e., $(1 + \varepsilon)$-approximation for every $\varepsilon > 0$) for the classical $k$-means clustering problem in the QRAM model with a running time that has only polylogarithmic dependence on the number of data points. More specifically, given a dataset $V$ with $N$ points in $\mathbb{R}^d$ stored in QRAM data structure, our quantum algorithm runs in time $\tilde{O} \left( 2^{\tilde{O}(\frac{k}{\varepsilon})} \eta^2 d\right)$ and with high probability outputs a set $C$ of $k$ centers such that $cost(V, C) \leq (1+\varepsilon) \cdot cost(V, C_{OPT})$. Here $C_{OPT}$ denotes the optimal $k$-centers, $cost(.)$ denotes the standard $k$-means cost function (i.e., the sum of the squared distance of points to the closest center), and $\eta$ is the aspect ratio (i.e., the ratio of maximum distance to minimum distance). This is the first quantum algorithm with a polylogarithmic running time that gives a provable approximation guarantee of $(1+\varepsilon)$ for the $k$-means problem. Also, unlike previous works on unsupervised learning, our quantum algorithm does not require quantum linear algebra subroutines and has a running time independent of parameters (e.g., condition number) that appear in such procedures.

This paper studies the binary classification of unbounded data from ${\mathbb R}^d$ generated under Gaussian Mixture Models (GMMs) using deep ReLU neural networks. We obtain $\unicode{x2013}$ for the first time $\unicode{x2013}$ non-asymptotic upper bounds and convergence rates of the excess risk (excess misclassification error) for the classification without restrictions on model parameters. The convergence rates we derive do not depend on dimension $d$, demonstrating that deep ReLU networks can overcome the curse of dimensionality in classification. While the majority of existing generalization analysis of classification algorithms relies on a bounded domain, we consider an unbounded domain by leveraging the analyticity and fast decay of Gaussian distributions. To facilitate our analysis, we give a novel approximation error bound for general analytic functions using ReLU networks, which may be of independent interest. Gaussian distributions can be adopted nicely to model data arising in applications, e.g., speeches, images, and texts; our results provide a theoretical verification of the observed efficiency of deep neural networks in practical classification problems.

Sampling-based path planning algorithms suffer from heavy reliance on uniform sampling, which accounts for unreliable and time-consuming performance, especially in complex environments. Recently, neural-network-driven methods predict regions as sampling domains to realize a non-uniform sampling and reduce calculation time. However, the accuracy of region prediction hinders further improvement. We propose a sampling-based algorithm, abbreviated to Region Prediction Neural Network RRT* (RPNN-RRT*), to rapidly obtain the optimal path based on a high-accuracy region prediction. First, we implement a region prediction neural network (RPNN), to predict accurate regions for the RPNN-RRT*. A full-layer channel-wise attention module is employed to enhance the feature fusion in the concatenation between the encoder and decoder. Moreover, a three-level hierarchy loss is designed to learn the pixel-wise, map-wise, and patch-wise features. A dataset, named Complex Environment Motion Planning, is established to test the performance in complex environments. Ablation studies and test results show that a high accuracy of 89.13% is achieved by the RPNN for region prediction, compared with other region prediction models. In addition, the RPNN-RRT* performs in different complex scenarios, demonstrating significant and reliable superiority in terms of the calculation time, sampling efficiency, and success rate for optimal path planning.

We consider the problem of estimating a nested structure of two expectations taking the form $U_0 = E[\max\{U_1(Y), \pi(Y)\}]$, where $U_1(Y) = E[X\ |\ Y]$. Terms of this form arise in financial risk estimation and option pricing. When $U_1(Y)$ requires approximation, but exact samples of $X$ and $Y$ are available, an antithetic multilevel Monte Carlo (MLMC) approach has been well-studied in the literature. Under general conditions, the antithetic MLMC estimator obtains a root mean squared error $\varepsilon$ with order $\varepsilon^{-2}$ cost. If, additionally, $X$ and $Y$ require approximate sampling, careful balancing of the various aspects of approximation is required to avoid a significant computational burden. Under strong convergence criteria on approximations to $X$ and $Y$, randomised multilevel Monte Carlo techniques can be used to construct unbiased Monte Carlo estimates of $U_1$, which can be paired with an antithetic MLMC estimate of $U_0$ to recover order $\varepsilon^{-2}$ computational cost. In this work, we instead consider biased multilevel approximations of $U_1(Y)$, which require less strict assumptions on the approximate samples of $X$. Extensions to the method consider an approximate and antithetic sampling of $Y$. Analysis shows the resulting estimator has order $\varepsilon^{-2}$ asymptotic cost under the conditions required by randomised MLMC and order $\varepsilon^{-2}|\log\varepsilon|^3$ cost under more general assumptions.

Chain-of-Though (CoT) prompting has shown promising performance in various reasoning tasks. Recently, Self-Consistency \citep{wang2023selfconsistency} proposes to sample a diverse set of reasoning chains which may lead to different answers while the answer that receives the most votes is selected. In this paper, we propose a novel method to use backward reasoning in verifying candidate answers. We mask a token in the question by ${\bf x}$ and ask the LLM to predict the masked token when a candidate answer is provided by \textit{a simple template}, i.e., ``\textit{\textbf{If we know the answer of the above question is \{a candidate answer\}, what is the value of unknown variable ${\bf x}$?}}'' Intuitively, the LLM is expected to predict the masked token successfully if the provided candidate answer is correct. We further propose FOBAR to combine forward and backward reasoning for estimating the probability of candidate answers. We conduct extensive experiments on six data sets and three LLMs. Experimental results demonstrate that FOBAR achieves state-of-the-art performance on various reasoning benchmarks.

Let $X$ be a set of items of size $n$ that contains some defective items, denoted by $I$, where $I \subseteq X$. In group testing, a {\it test} refers to a subset of items $Q \subset X$. The outcome of a test is $1$ if $Q$ contains at least one defective item, i.e., $Q\cap I \neq \emptyset$, and $0$ otherwise. We give a novel approach to obtaining lower bounds in non-adaptive randomized group testing. The technique produced lower bounds that are within a factor of $1/{\log\log\stackrel{k}{\cdots}\log n}$ of the existing upper bounds for any constant~$k$. Employing this new method, we can prove the following result. For any fixed constants $k$, any non-adaptive randomized algorithm that, for any set of defective items $I$, with probability at least $2/3$, returns an estimate of the number of defective items $|I|$ to within a constant factor requires at least $$\Omega\left(\frac{\log n}{\log\log\stackrel{k}{\cdots}\log n}\right)$$ tests. Our result almost matches the upper bound of $O(\log n)$ and solves the open problem posed by Damaschke and Sheikh Muhammad [COCOA 2010 and Discrete Math., Alg. and Appl., 2010]. Additionally, it improves upon the lower bound of $\Omega(\log n/\log\log n)$ previously established by Bshouty [ISAAC 2019].

In Linear Logic ($\mathsf{LL}$), the exponential modality $!$ brings forth a distinction between non-linear proofs and linear proofs, where linear means using an argument exactly once. Differential Linear Logic ($\mathsf{DiLL}$) is an extension of Linear Logic which includes additional rules for $!$ which encode differentiation and the ability of linearizing proofs. On the other hand, Graded Linear Logic ($\mathsf{GLL}$) is a variation of Linear Logic in such a way that $!$ is now indexed over a semiring $R$. This $R$-grading allows for non-linear proofs of degree $r \in R$, such that the linear proofs are of degree $1 \in R$. There has been recent interest in combining these two variations of $\mathsf{LL}$ together and developing Graded Differential Linear Logic ($\mathsf{GDiLL}$). In this paper we present a sequent calculus for $\mathsf{GDiLL}$, as well as introduce its categorical semantics, which we call graded differential categories, using both coderelictions and deriving transformations. We prove that symmetric powers always give graded differential categories, and provide other examples of graded differential categories. We also discuss graded versions of (monoidal) coalgebra modalities, additive bialgebra modalities, and the Seely isomorphisms, as well as their implementations in the sequent calculus of $\mathsf{GDiLL}$.

Leroux has proved that unreachability in Petri nets can be witnessed by a Presburger separator, i.e. if a marking $\vec{m}_\text{src}$ cannot reach a marking $\vec{m}_\text{tgt}$, then there is a formula $\varphi$ of Presburger arithmetic such that: $\varphi(\vec{m}_\text{src})$ holds; $\varphi$ is forward invariant, i.e., $\varphi(\vec{m})$ and $\vec{m} \rightarrow \vec{m}'$ imply $\varphi(\vec{m}'$); and $\neg \varphi(\vec{m}_\text{tgt})$ holds. While these separators could be used as explanations and as formal certificates of unreachability, this has not yet been the case due to their worst-case size, which is at least Ackermannian, and the complexity of checking that a formula is a separator, which is at least exponential (in the formula size). We show that, in continuous Petri nets, these two problems can be overcome. We introduce locally closed separators, and prove that: (a) unreachability can be witnessed by a locally closed separator computable in polynomial time; (b) checking whether a formula is a locally closed separator is in NC (so, simpler than unreachability, which is P-complete). We further consider the more general problem of (existential) set-to-set reachability, where two sets of markings are given as convex polytopes. We show that, while our approach does not extend directly, we can efficiently certify unreachability via an altered Petri net.

While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.

Cold-start problems are long-standing challenges for practical recommendations. Most existing recommendation algorithms rely on extensive observed data and are brittle to recommendation scenarios with few interactions. This paper addresses such problems using few-shot learning and meta learning. Our approach is based on the insight that having a good generalization from a few examples relies on both a generic model initialization and an effective strategy for adapting this model to newly arising tasks. To accomplish this, we combine the scenario-specific learning with a model-agnostic sequential meta-learning and unify them into an integrated end-to-end framework, namely Scenario-specific Sequential Meta learner (or s^2 meta). By doing so, our meta-learner produces a generic initial model through aggregating contextual information from a variety of prediction tasks while effectively adapting to specific tasks by leveraging learning-to-learn knowledge. Extensive experiments on various real-world datasets demonstrate that our proposed model can achieve significant gains over the state-of-the-arts for cold-start problems in online recommendation. Deployment is at the Guess You Like session, the front page of the Mobile Taobao.

北京阿比特科技有限公司