亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Video caching can significantly improve backhaul traffic congestion by locally storing the popular content that users frequently request. A privacy-preserving method is desirable to learn how users' demands change over time. As such, this paper proposes a novel resource-aware hierarchical federated learning (RawHFL) solution to predict users' future content requests under the realistic assumptions that content requests are sporadic and users' datasets can only be updated based on the requested content's information. Considering a partial client participation case, we first derive the upper bound of the global gradient norm that depends on the clients' local training rounds and the successful reception of their accumulated gradients over the wireless links. Under delay, energy and radio resource constraints, we then optimize client selection and their local rounds and central processing unit (CPU) frequencies to minimize a weighted utility function that facilitates RawHFL's convergence in an energy-efficient way. Our simulation results show that the proposed solution significantly outperforms the considered baselines in terms of prediction accuracy and total energy expenditure.

相關內容

Generative artificial intelligence (GenAI) offers various services to users through content creation, which is believed to be one of the most important components in future networks. However, training and deploying big artificial intelligence models (BAIMs) introduces substantial computational and communication overhead.This poses a critical challenge to centralized approaches, due to the need of high-performance computing infrastructure and the reliability, secrecy and timeliness issues in long-distance access of cloud services. Therefore, there is an urging need to decentralize the services, partly moving them from the cloud to the edge and establishing native GenAI services to enable private, timely, and personalized experiences. In this paper, we propose a brand-new bottom-up BAIM architecture with synergetic big cloud model and small edge models, and design a distributed training framework and a task-oriented deployment scheme for efficient provision of native GenAI services. The proposed framework can facilitate collaborative intelligence, enhance adaptability, gather edge knowledge and alleviate edge-cloud burden. The effectiveness of the proposed framework is demonstrated through an image generation use case. Finally, we outline fundamental research directions to fully exploit the collaborative potential of edge and cloud for native GenAI and BAIM applications.

Fraud detection aims to discover fraudsters deceiving other users by, for example, leaving fake reviews or making abnormal transactions. Graph-based fraud detection methods consider this task as a classification problem with two classes: frauds or normal. We address this problem using Graph Neural Networks (GNNs) by proposing a dynamic relation-attentive aggregation mechanism. Based on the observation that many real-world graphs include different types of relations, we propose to learn a node representation per relation and aggregate the node representations using a learnable attention function that assigns a different attention coefficient to each relation. Furthermore, we combine the node representations from different layers to consider both the local and global structures of a target node, which is beneficial to improving the performance of fraud detection on graphs with heterophily. By employing dynamic graph attention in all the aggregation processes, our method adaptively computes the attention coefficients for each node. Experimental results show that our method, DRAG, outperforms state-of-the-art fraud detection methods on real-world benchmark datasets.

Semi-Supervised Object Detection (SSOD) has achieved resounding success by leveraging unlabeled data to improve detection performance. However, in Open Scene Semi-Supervised Object Detection (O-SSOD), unlabeled data may contains unknown objects not observed in the labeled data, which will increase uncertainty in the model's predictions for known objects. It is detrimental to the current methods that mainly rely on self-training, as more uncertainty leads to the lower localization and classification precision of pseudo labels. To this end, we propose Credible Teacher, an end-to-end framework. Credible Teacher adopts an interactive teaching mechanism using flexible labels to prevent uncertain pseudo labels from misleading the model and gradually reduces its uncertainty through the guidance of other credible pseudo labels. Empirical results have demonstrated our method effectively restrains the adverse effect caused by O-SSOD and significantly outperforms existing counterparts.

From politicians to podcast hosts, online platforms have systematically banned (``deplatformed'') influential users for breaking platform guidelines. Previous inquiries on the effectiveness of this intervention are inconclusive because 1) they consider only few deplatforming events; 2) they consider only overt engagement traces (e.g., likes and posts) but not passive engagement (e.g., views); 3) they do not consider all the potential places users impacted by the deplatforming event might migrate to. We address these limitations in a longitudinal, quasi-experimental study of 165 deplatforming events targeted at 101 influencers. We collect deplatforming events from Reddit posts and then manually curate the data, ensuring the correctness of a large dataset of deplatforming events. Then, we link these events to Google Trends and Wikipedia page views, platform-agnostic measures of online attention that capture the general public's interest in specific influencers. Through a difference-in-differences approach, we find that deplatforming reduces online attention toward influencers. After 12 months, we estimate that online attention toward deplatformed influencers is reduced by -63% (95% CI [-75%,-46%]) on Google and by -43% (95% CI [-57%,-24%]) on Wikipedia. Further, as we study over a hundred deplatforming events, we can analyze in which cases deplatforming is more or less impactful, revealing nuances about the intervention. Notably, we find that both permanent and temporary deplatforming reduce online attention toward influencers; Overall, this work contributes to the ongoing effort to map the effectiveness of content moderation interventions, driving platform governance away from speculation.

Learned video compression methods have gained a variety of interest in the video coding community since they have matched or even exceeded the rate-distortion (RD) performance of traditional video codecs. However, many current learning-based methods are dedicated to utilizing short-range temporal information, thus limiting their performance. In this paper, we focus on exploiting the unique characteristics of video content and further exploring temporal information to enhance compression performance. Specifically, for long-range temporal information exploitation, we propose temporal prior that can update continuously within the group of pictures (GOP) during inference. In that case temporal prior contains valuable temporal information of all decoded images within the current GOP. As for short-range temporal information, we propose a progressive guided motion compensation to achieve robust and effective compensation. In detail, we design a hierarchical structure to achieve multi-scale compensation. More importantly, we use optical flow guidance to generate pixel offsets between feature maps at each scale, and the compensation results at each scale will be used to guide the following scale's compensation. Sufficient experimental results demonstrate that our method can obtain better RD performance than state-of-the-art video compression approaches. The code is publicly available on: //github.com/Huairui/LSTVC.

Video content has experienced a surge in popularity, asserting its dominance over internet traffic and Internet of Things (IoT) networks. Video compression has long been regarded as the primary means of efficiently managing the substantial multimedia traffic generated by video-capturing devices. Nevertheless, video compression algorithms entail significant computational demands in order to achieve substantial compression ratios. This complexity presents a formidable challenge when implementing efficient video coding standards in resource-constrained embedded systems, such as IoT edge node cameras. To tackle this challenge, this paper introduces NU-Class Net, an innovative deep-learning model designed to mitigate compression artifacts stemming from lossy compression codecs. This enhancement significantly elevates the perceptible quality of low-bit-rate videos. By employing the NU-Class Net, the video encoder within the video-capturing node can reduce output quality, thereby generating low-bit-rate videos and effectively curtailing both computation and bandwidth requirements at the edge. On the decoder side, which is typically less encumbered by resource limitations, NU-Class Net is applied after the video decoder to compensate for artifacts and approximate the quality of the original video. Experimental results affirm the efficacy of the proposed model in enhancing the perceptible quality of videos, especially those streamed at low bit rates.

Despite technological advancements, the significance of interdisciplinary subjects like complex networks has grown. Exploring communication within these networks is crucial, with traffic becoming a key concern due to the expanding population and increased need for connections. Congestion tends to originate in specific network areas but quickly proliferates throughout. Consequently, understanding the transition from a flow-free state to a congested state is vital. Numerous studies have delved into comprehending the emergence and control of congestion in complex networks, falling into three general categories: soft strategies, hard strategies, and resource allocation strategies. This article introduces a routing algorithm leveraging reinforcement learning to address two primary objectives: congestion control and optimizing path length based on the shortest path algorithm, ultimately enhancing network throughput compared to previous methods. Notably, the proposed method proves effective not only in Barab\'asi-Albert scale-free networks but also in other network models such as Watts-Strogatz (small-world) and Erd\"os-R\'enyi (random network). Simulation experiment results demonstrate that, across various traffic scenarios and network topologies, the proposed method can enhance efficiency criteria by up to 30% while reducing maximum node congestion by five times.

Neural Radiance Fields (NeRF) have recently emerged as a powerful method for image-based 3D reconstruction, but the lengthy per-scene optimization limits their practical usage, especially in resource-constrained settings. Existing approaches solve this issue by reducing the number of input views and regularizing the learned volumetric representation with either complex losses or additional inputs from other modalities. In this paper, we present KeyNeRF, a simple yet effective method for training NeRF in few-shot scenarios by focusing on key informative rays. Such rays are first selected at camera level by a view selection algorithm that promotes baseline diversity while guaranteeing scene coverage, then at pixel level by sampling from a probability distribution based on local image entropy. Our approach performs favorably against state-of-the-art methods, while requiring minimal changes to existing NeRF codebases.

Music streaming services heavily rely on recommender systems to improve their users' experience, by helping them navigate through a large musical catalog and discover new songs, albums or artists. However, recommending relevant and personalized content to new users, with few to no interactions with the catalog, is challenging. This is commonly referred to as the user cold start problem. In this applied paper, we present the system recently deployed on the music streaming service Deezer to address this problem. The solution leverages a semi-personalized recommendation strategy, based on a deep neural network architecture and on a clustering of users from heterogeneous sources of information. We extensively show the practical impact of this system and its effectiveness at predicting the future musical preferences of cold start users on Deezer, through both offline and online large-scale experiments. Besides, we publicly release our code as well as anonymized usage data from our experiments. We hope that this release of industrial resources will benefit future research on user cold start recommendation.

Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.

北京阿比特科技有限公司