In this paper, a shallow Ritz-type neural network for solving elliptic problems with delta function singular sources on an interface is developed. There are three novel features in the present work; namely, (i) the delta function singularity is naturally removed, (ii) level set function is introduced as a feather input, (iii) it is completely shallow consisting of only one hidden layer. We first introduce the energy functional of the problem and then transform the contribution of singular sources to a regular surface integral along the interface. In such a way the delta function singularity can be naturally removed without the introduction of discrete delta function that is commonly used in traditional regularization methods such as the well-known immersed boundary method. The original problem is then reformulated as a minimization problem. We propose a shallow Ritz-type neural network with one hidden layer to approximate the global minimizer of the energy functional. As a result, the network is trained by minimizing the loss function that is a discrete version of the energy. In addition, we include the level set function of the interface as a feature input and find that it significantly improves the training efficiency and accuracy. We perform a series of numerical tests to demonstrate the accuracy of the present network as well as its capability for problems in irregular domains and in higher dimensions.
System design tools are often only available as input-output blackboxes: for a given design as input they compute an output representing system behavior. Blackboxes are intended to be run in the forward direction. This paper presents a new method of solving the inverse design problem namely, given requirements or constraints on output, find an input that also optimizes an objective function. This problem is challenging for several reasons. First, blackboxes are not designed to be run in reverse. Second, inputs and outputs can be discrete and continuous. Third, finding designs concurrently satisfying a set of requirements is hard because designs satisfying individual requirements may conflict with each other. Fourth, blackbox evaluations can be expensive. Finally, blackboxes can sometimes fail to produce an output. This paper presents CNMA, a new method of solving the inverse problem that overcomes these challenges. CNMA tries to sample only the part of the design space relevant to solving the problem, leveraging the power of neural networks, Mixed Integer Linear Programs, and a new learning-from-failure feedback loop. The paper also presents a parallel version of CNMA that improves the efficiency and quality of solutions over the sequential version, and tries to steer it away from local optima. CNMA's performance is evaluated against conventional optimization methods for seven nonlinear design problems of 8 (two problems), 10, 15, 36 and 60 real-valued dimensions and one with 186 binary dimensions. Conventional methods evaluated are off-the-shelf implementations of Bayesian Optimization with Gaussian Processes, Nelder Mead and Random Search. The first two do not solve problems that are high-dimensional, have discrete and continuous variables or whose blackboxes can fail to return values. CNMA solves all problems, and surpasses the performance of conventional methods by 1%-87%.
We study nonlinear optimization problems with stochastic objective and deterministic equality and inequality constraints, which emerge in numerous applications including finance, manufacturing, power systems and, recently, deep neural networks. We propose an active-set stochastic sequential quadratic programming algorithm, using a differentiable exact augmented Lagrangian as the merit function. The algorithm adaptively selects the penalty parameters of augmented Lagrangian and performs stochastic line search to decide the stepsize. The global convergence is established: for any initialization, the "liminf" of the KKT residuals converges to zero almost surely. Our algorithm and analysis further develop the prior work \cite{Na2021Adaptive} by allowing nonlinear inequality constraints. We demonstrate the performance of the algorithm on a subset of nonlinear problems collected in the CUTEst test set.
This paper addresses the gradient coding and coded matrix multiplication problems in distributed optimization and coded computing. We present a numerically stable binary coding method which overcomes the drawbacks of the gradient coding method proposed by Tandon et al., and can also be leveraged by coded computing networks whose servers are of heterogeneous nature. The proposed binary encoding avoids operations over the real and complex numbers which are inherently numerically unstable, thereby enabling numerically stable distributed encodings of the partial gradients. We then make connections between gradient coding and coded matrix multiplication. Specifically, we show that any gradient coding scheme can be extended to coded matrix multiplication. Furthermore, we show how the proposed binary gradient coding scheme can be used to construct three different coded matrix multiplication schemes, each achieving different trade-offs.
In this article, we study approximation properties of the variation spaces corresponding to shallow neural networks with a variety of activation functions. We introduce two main tools for estimating the metric entropy, approximation rates, and $n$-widths of these spaces. First, we introduce the notion of a smoothly parameterized dictionary and give upper bounds on the non-linear approximation rates, metric entropy and $n$-widths of their absolute convex hull. The upper bounds depend upon the order of smoothness of the parameterization. This result is applied to dictionaries of ridge functions corresponding to shallow neural networks, and they improve upon existing results in many cases. Next, we provide a method for lower bounding the metric entropy and $n$-widths of variation spaces which contain certain classes of ridge functions. This result gives sharp lower bounds on the $L^2$-approximation rates, metric entropy, and $n$-widths for variation spaces corresponding to neural networks with a range of important activation functions, including ReLU$^k$, sigmoidal activation functions with bounded variation, and the B-spline activation functions.
Non-convex optimization is ubiquitous in modern machine learning. Researchers devise non-convex objective functions and optimize them using off-the-shelf optimizers such as stochastic gradient descent and its variants, which leverage the local geometry and update iteratively. Even though solving non-convex functions is NP-hard in the worst case, the optimization quality in practice is often not an issue -- optimizers are largely believed to find approximate global minima. Researchers hypothesize a unified explanation for this intriguing phenomenon: most of the local minima of the practically-used objectives are approximately global minima. We rigorously formalize it for concrete instances of machine learning problems.
Pre-trained deep neural network language models such as ELMo, GPT, BERT and XLNet have recently achieved state-of-the-art performance on a variety of language understanding tasks. However, their size makes them impractical for a number of scenarios, especially on mobile and edge devices. In particular, the input word embedding matrix accounts for a significant proportion of the model's memory footprint, due to the large input vocabulary and embedding dimensions. Knowledge distillation techniques have had success at compressing large neural network models, but they are ineffective at yielding student models with vocabularies different from the original teacher models. We introduce a novel knowledge distillation technique for training a student model with a significantly smaller vocabulary as well as lower embedding and hidden state dimensions. Specifically, we employ a dual-training mechanism that trains the teacher and student models simultaneously to obtain optimal word embeddings for the student vocabulary. We combine this approach with learning shared projection matrices that transfer layer-wise knowledge from the teacher model to the student model. Our method is able to compress the BERT_BASE model by more than 60x, with only a minor drop in downstream task metrics, resulting in a language model with a footprint of under 7MB. Experimental results also demonstrate higher compression efficiency and accuracy when compared with other state-of-the-art compression techniques.
Recent studies have shown the vulnerability of reinforcement learning (RL) models in noisy settings. The sources of noises differ across scenarios. For instance, in practice, the observed reward channel is often subject to noise (e.g., when observed rewards are collected through sensors), and thus observed rewards may not be credible as a result. Also, in applications such as robotics, a deep reinforcement learning (DRL) algorithm can be manipulated to produce arbitrary errors. In this paper, we consider noisy RL problems where observed rewards by RL agents are generated with a reward confusion matrix. We call such observed rewards as perturbed rewards. We develop an unbiased reward estimator aided robust RL framework that enables RL agents to learn in noisy environments while observing only perturbed rewards. Our framework draws upon approaches for supervised learning with noisy data. The core ideas of our solution include estimating a reward confusion matrix and defining a set of unbiased surrogate rewards. We prove the convergence and sample complexity of our approach. Extensive experiments on different DRL platforms show that policies based on our estimated surrogate reward can achieve higher expected rewards, and converge faster than existing baselines. For instance, the state-of-the-art PPO algorithm is able to obtain 67.5% and 46.7% improvements in average on five Atari games, when the error rates are 10% and 30% respectively.
This paper addresses the problem of formally verifying desirable properties of neural networks, i.e., obtaining provable guarantees that neural networks satisfy specifications relating their inputs and outputs (robustness to bounded norm adversarial perturbations, for example). Most previous work on this topic was limited in its applicability by the size of the network, network architecture and the complexity of properties to be verified. In contrast, our framework applies to a general class of activation functions and specifications on neural network inputs and outputs. We formulate verification as an optimization problem (seeking to find the largest violation of the specification) and solve a Lagrangian relaxation of the optimization problem to obtain an upper bound on the worst case violation of the specification being verified. Our approach is anytime i.e. it can be stopped at any time and a valid bound on the maximum violation can be obtained. We develop specialized verification algorithms with provable tightness guarantees under special assumptions and demonstrate the practical significance of our general verification approach on a variety of verification tasks.
In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.
This paper presents a safety-aware learning framework that employs an adaptive model learning method together with barrier certificates for systems with possibly nonstationary agent dynamics. To extract the dynamic structure of the model, we use a sparse optimization technique, and the resulting model will be used in combination with control barrier certificates which constrain feedback controllers only when safety is about to be violated. Under some mild assumptions, solutions to the constrained feedback-controller optimization are guaranteed to be globally optimal, and the monotonic improvement of a feedback controller is thus ensured. In addition, we reformulate the (action-)value function approximation to make any kernel-based nonlinear function estimation method applicable. We then employ a state-of-the-art kernel adaptive filtering technique for the (action-)value function approximation. The resulting framework is verified experimentally on a brushbot, whose dynamics is unknown and highly complex.