亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Asymptotic study on the partition function $p(n)$ began with the work of Hardy and Ramanujan. Later Rademacher obtained a convergent series for $p(n)$ and an error bound was given by Lehmer. Despite having this, a full asymptotic expansion for $p(n)$ with an explicit error bound is not known. Recently O'Sullivan studied the asymptotic expansion of $p^{k}(n)$-partitions into $k$th powers, initiated by Wright, and consequently obtained an asymptotic expansion for $p(n)$ along with a concise description of the coefficients involved in the expansion but without any estimation of the error term. Here we consider a detailed and comprehensive analysis on an estimation of the error term obtained by truncating the asymptotic expansion for $p(n)$ at any positive integer $n$. This gives rise to an infinite family of inequalities for $p(n)$ which finally answers to a question proposed by Chen. Our error term estimation predominantly relies on applications of algorithmic methods from symbolic summation.

相關內容

In this paper, we propose a method to predict the asymptotic performance of the alternating direction method of multipliers (ADMM) for compressed sensing, where we reconstruct an unknown structured signal from its underdetermined linear measurements. The derivation of the proposed method is based on the recently developed convex Gaussian min-max theorem (CGMT), which can be applied to various convex optimization problems to obtain its asymptotic error performance. Our main idea is to analyze the convex subproblem in the update of ADMM iteratively and characterize the asymptotic distribution of the tentative estimate obtained at each iteration. However, since the original CGMT cannot be used directly for the analysis of the iterative updates, we intuitively assume an extended version of CGMT in the derivation of the proposed method. Under the assumption, the result shows that the update equations in ADMM can be decoupled into a scalar-valued stochastic process in the asymptotic regime with the large system limit. From the asymptotic result, we can predict the evolution of the error (e.g., mean-square-error (MSE) and symbol error rate (SER)) in ADMM for large-scale compressed sensing problems. Simulation results show that the empirical performance of ADMM and its prediction are close to each other in sparse vector reconstruction and binary vector reconstruction.

Building and maintaining a catalog of resident space objects involves several tasks, ranging from observations to data analysis. Once acquired, the knowledge of a space object needs to be updated following a dedicated observing schedule. Dynamics mismodeling and unknown maneuvers can alter the catalog's accuracy, resulting in uncorrelated observations originating from the same object. Starting from two independent orbits, this work presents a novel approach to detect and estimate maneuvers of resident space objects, which allows for correlation recovery. The estimation is performed with successive convex optimization without a-priori assumption on the thrust arcs structure and thrust direction.

There has been increasing attention to semi-supervised learning (SSL) approaches in machine learning to forming a classifier in situations where the training data consists of some feature vectors that have their class labels missing. In this study, we consider the generative model approach proposed by Ahfock&McLachlan(2020) who introduced a framework with a missingness mechanism for the missing labels of the unclassified features. In the case of two multivariate normal classes with a common covariance matrix, they showed that the error rate of the estimated Bayes' rule formed by this SSL approach can actually have lower error rate than the one that could be formed from a completely classified sample. In this study we consider this rather surprising result in cases where there may be more than two normal classes with not necessarily common covariance matrices.

The overheads of classical decoding for quantum error correction on superconducting quantum systems grow rapidly with the number of logical qubits and their correction code distance. Decoding at room temperature is bottle-necked by refrigerator I/O bandwidth while cryogenic on-chip decoding is limited by area/power/thermal budget. To overcome these overheads, we are motivated by the observation that in the common case, error signatures are fairly trivial with high redundancy/sparsity, since the error correction codes are over-provisioned to correct for uncommon worst-case complex scenarios (to ensure substantially low logical error rates). If suitably exploited, these trivial signatures can be decoded and corrected with insignificant overhead, thereby alleviating the bottlenecks described above, while still handling the worst-case complex signatures by state-of-the-art means. Our proposal, targeting Surface Codes, consists of: 1) Clique: A lightweight decoder for decoding and correcting trivial common-case errors, designed for the cryogenic domain. The decoder is implemented for SFQ logic. 2) A statistical confidence-based technique for off-chip decoding bandwidth allocation, to efficiently handle rare complex decodes which are not covered by the on-chip decoder. 3) A method for stalling circuit execution, for the worst-case scenarios in which the provisioned off-chip bandwidth is insufficient to complete all requested off-chip decodes. In all, our proposal enables 70-99+% off-chip bandwidth elimination across a range of logical and physical error rates, without significantly sacrificing the accuracy of state-of-the-art off-chip decoding. By doing so, it achieves 10-10000x bandwidth reduction over prior off-chip bandwidth reduction techniques. Furthermore, it achieves a 15-37x resource overhead reduction compared to prior on-chip-only decoding.

We consider a high-dimensional random constrained optimization problem in which a set of binary variables is subjected to a linear system of equations. The cost function is a simple linear cost, measuring the Hamming distance with respect to a reference configuration. Despite its apparent simplicity, this problem exhibits a rich phenomenology. We show that different situations arise depending on the random ensemble of linear systems. When each variable is involved in at most two linear constraints, we show that the problem can be partially solved analytically, in particular we show that upon convergence, the zero-temperature limit of the cavity equations returns the optimal solution. We then study the geometrical properties of more general random ensembles. In particular we observe a range in the density of constraints at which the systems enters a glassy phase where the cost function has many minima. Interestingly, the algorithmic performances are only sensitive to another phase transition affecting the structure of configurations allowed by the linear constraints. We also extend our results to variables belonging to $\text{GF}(q)$, the Galois Field of order $q$. We show that increasing the value of $q$ allows to achieve a better optimum, which is confirmed by the Replica Symmetric cavity method predictions.

We revisit multiple hypothesis testing and propose a two-phase test, where each phase is a fixed-length test and the second-phase proceeds only if a reject option is decided in the first phase. We derive achievable error exponents of error probabilities under each hypothesis and show that our two-phase test bridges over fixed-length and sequential tests in the similar spirit of Lalitha and Javidi (ISIT, 2016) for binary hypothesis testing. Specifically, our test could achieve the performance close to a sequential test with the asymptotic complexity of a fixed-length test and such test is named the almost fixed-length test. Motivated by practical applications where the generating distribution under each hypothesis is \emph{unknown}, we generalize our results to the statistical classification framework of Gutman (TIT, 1989). We first consider binary classification and then generalize our results to $M$-ary classification. For both cases, we propose a two-phase test, derive achievable error exponents and demonstrate that our two-phase test bridges over fixed-length and sequential tests. In particular, for $M$-ary classification, no final reject option is required to achieve the same exponent as the sequential test of Haghifam, Tan, and Khisti (TIT, 2021). Our results generalize the design and analysis of the almost fixed-length test for binary hypothesis testing to broader and more practical families of $M$-ary hypothesis testing and statistical classification.

A difficulty in MSE estimation occurs because we do not specify a full distribution for the survey weights. This obfuscates the use of fully parametric bootstrap procedures. To overcome this challenge, we develop a novel MSE estimator. We estimate the leading term in the MSE, which is the MSE of the best predictor (constructed with the true parameters), using the same simulated samples used to construct the basic predictor. We then exploit the asymptotic normal distribution of the parameter estimators to estimate the second term in the MSE, which reflects variability in the estimated parameters. We incorporate a correction for the bias of the estimator of the leading term without the use of computationally intensive double-bootstrap procedures. We further develop calibrated prediction intervals that rely less on normal theory than standard prediction intervals. We empirically demonstrate the validity of the proposed procedures through extensive simulation studies. We apply the methods to predict several functions of sheet and rill erosion for Iowa counties using data from a complex agricultural survey.

We consider the approximation of manifold-valued functions by embedding the manifold into a higher dimensional space, applying a vector-valued approximation operator and projecting the resulting vector back to the manifold. It is well known that the approximation error for manifold-valued functions is close to the approximation error for vector-valued functions. This is not true anymore if we consider the derivatives of such functions. In our paper we give pre-asymptotic error bounds for the approximation of the derivative of manifold-valued function. In particular, we provide explicit constants that depend on the reach of the embedded manifold.

We study the rank of sub-matrices arising out of kernel functions, $F(\pmb{x},\pmb{y}): \mathbb{R}^d \times \mathbb{R}^d \mapsto \mathbb{R}$, where $\pmb{x},\pmb{y} \in \mathbb{R}^d$ with $F(\pmb{x},\pmb{y})$ is smooth everywhere except along the line $\pmb{x}=\pmb{y}$. Such kernel functions are frequently encountered in a wide range of applications such as $N$ body problems, Green's functions, integral equations, geostatistics, kriging, Gaussian processes, etc. One of the challenges in dealing with these kernel functions is that the corresponding matrix associated with these kernels is large and dense and thereby, the computational cost of matrix operations is high. In this article, we prove new theorems bounding the numerical rank of sub-matrices arising out of these kernel functions. Under reasonably mild assumptions, we prove that the rank of certain sub-matrices is rank-deficient in finite precision. This rank depends on the dimension of the ambient space and also on the type of interaction between the hyper-cubes containing the corresponding set of particles. This rank structure can be leveraged to reduce the computational cost of certain matrix operations such as matrix-vector products, solving linear systems, etc. We also present numerical results on the growth of rank of certain sub-matrices in $1$D, $2$D, $3$D and $4$D, which, not surprisingly, agrees with the theoretical results.

This work proposes a fast iterative method for local steric Poisson--Boltzmann (PB) theories, in which the electrostatic potential is governed by the Poisson's equation and ionic concentrations satisfy equilibrium conditions. To present the method, we focus on a local steric PB theory derived from a lattice-gas model, as an example. The advantages of the proposed method in efficiency are achieved by treating ionic concentrations as scalar implicit functions of the electrostatic potential, though such functions are only numerically achievable. The existence, uniqueness, boundness, and smoothness of such functions are rigorously established. A Newton iteration method with truncation is proposed to solve a nonlinear system discretized from the generalized PB equations. The existence and uniqueness of the solution to the discretized nonlinear system are established by showing that it is a unique minimizer of a constructed convex energy. Thanks to the boundness of ionic concentrations, truncation bounds for the potential are obtained by using the extremum principle. The truncation step in iterations is shown to be energy and error decreasing. To further speed-up computations, we propose a novel precomputing-interpolation strategy, which is applicable to other local steric PB theories and makes the proposed methods for solving steric PB theories as efficient as for solving the classical PB theory. Analysis on the Newton iteration method with truncation shows local quadratic convergence for the proposed numerical methods. Applications to realistic biomolecular solvation systems reveal that counterions with steric hindrance stratify in an order prescribed by the parameter of ionic valence-to-volume ratio. Finally, we remark that the proposed iterative methods for local steric PB theories can be readily incorporated in well-known classical PB solvers.

北京阿比特科技有限公司