This work concentrates on reducing the RTF and word error rate of a hybrid HMM-DNN. Our baseline system uses an architecture with TDNN and LSTM layers. We find this architecture particularly useful for lightly reverberated environments. However, these models tend to demand more computation than is desirable. In this work, we explore alternate architectures employing singular value decomposition (SVD) is applied to the TDNN layers to reduce the RTF, as well as to the affine transforms of every LSTM cell. We compare this approach with specifying bottleneck layers similar to those introduced by SVD before training. Additionally, we reduced the search space of the decoding graph to make it a better fit to operate in real-time applications. We report -61.57% relative reduction in RTF and almost 1% relative decrease in WER for our architecture trained on Fisher data along with reverberated versions of this dataset in order to match one of our target test distributions.
The vision transformer splits each image into a sequence of tokens with fixed length and processes the tokens in the same way as words in natural language processing. More tokens normally lead to better performance but considerably increased computational cost. Motivated by the proverb "A picture is worth a thousand words" we aim to accelerate the ViT model by making a long image short. To this end, we propose a novel approach to assign token length adaptively during inference. Specifically, we first train a ViT model, called Resizable-ViT (ReViT), that can process any given input with diverse token lengths. Then, we retrieve the "token-length label" from ReViT and use it to train a lightweight Token-Length Assigner (TLA). The token-length labels are the smallest number of tokens to split an image that the ReViT can make the correct prediction, and TLA is learned to allocate the optimal token length based on these labels. The TLA enables the ReViT to process the image with the minimum sufficient number of tokens during inference. Thus, the inference speed is boosted by reducing the token numbers in the ViT model. Our approach is general and compatible with modern vision transformer architectures and can significantly reduce computational expanse. We verified the effectiveness of our methods on multiple representative ViT models (DeiT, LV-ViT, and TimesFormer) across two tasks (image classification and action recognition).
Natural Language Processing (NLP) and especially natural language text analysis have seen great advances in recent times. Usage of deep learning in text processing has revolutionized the techniques for text processing and achieved remarkable results. Different deep learning architectures like CNN, LSTM, and very recent Transformer have been used to achieve state of the art results variety on NLP tasks. In this work, we survey a host of deep learning architectures for text classification tasks. The work is specifically concerned with the classification of Hindi text. The research in the classification of morphologically rich and low resource Hindi language written in Devanagari script has been limited due to the absence of large labeled corpus. In this work, we used translated versions of English data-sets to evaluate models based on CNN, LSTM and Attention. Multilingual pre-trained sentence embeddings based on BERT and LASER are also compared to evaluate their effectiveness for the Hindi language. The paper also serves as a tutorial for popular text classification techniques.
We study the impact of neural networks in text classification. Our focus is on training deep neural networks with proper weight initialization and greedy layer-wise pretraining. Results are compared with 1-layer neural networks and Support Vector Machines. We work with a dataset of labeled messages from the Twitter microblogging service and aim to predict weather conditions. A feature extraction procedure specific for the task is proposed, which applies dimensionality reduction using Latent Semantic Analysis. Our results show that neural networks outperform Support Vector Machines with Gaussian kernels, noticing performance gains from introducing additional hidden layers with nonlinearities. The impact of using Nesterov's Accelerated Gradient in backpropagation is also studied. We conclude that deep neural networks are a reasonable approach for text classification and propose further ideas to improve performance.
End-to-end approaches have drawn much attention recently for significantly simplifying the construction of an automatic speech recognition (ASR) system. RNN transducer (RNN-T) is one of the popular end-to-end methods. Previous studies have shown that RNN-T is difficult to train and a very complex training process is needed for a reasonable performance. In this paper, we explore RNN-T for a Chinese large vocabulary continuous speech recognition (LVCSR) task and aim to simplify the training process while maintaining performance. First, a new strategy of learning rate decay is proposed to accelerate the model convergence. Second, we find that adding convolutional layers at the beginning of the network and using ordered data can discard the pre-training process of the encoder without loss of performance. Besides, we design experiments to find a balance among the usage of GPU memory, training circle and model performance. Finally, we achieve 16.9% character error rate (CER) on our test set which is 2% absolute improvement from a strong BLSTM CE system with language model trained on the same text corpus.
We study the use of the Wave-U-Net architecture for speech enhancement, a model introduced by Stoller et al for the separation of music vocals and accompaniment. This end-to-end learning method for audio source separation operates directly in the time domain, permitting the integrated modelling of phase information and being able to take large temporal contexts into account. Our experiments show that the proposed method improves several metrics, namely PESQ, CSIG, CBAK, COVL and SSNR, over the state-of-the-art with respect to the speech enhancement task on the Voice Bank corpus (VCTK) dataset. We find that a reduced number of hidden layers is sufficient for speech enhancement in comparison to the original system designed for singing voice separation in music. We see this initial result as an encouraging signal to further explore speech enhancement in the time-domain, both as an end in itself and as a pre-processing step to speech recognition systems.
This paper investigates the impact of word-based RNN language models (RNN-LMs) on the performance of end-to-end automatic speech recognition (ASR). In our prior work, we have proposed a multi-level LM, in which character-based and word-based RNN-LMs are combined in hybrid CTC/attention-based ASR. Although this multi-level approach achieves significant error reduction in the Wall Street Journal (WSJ) task, two different LMs need to be trained and used for decoding, which increase the computational cost and memory usage. In this paper, we further propose a novel word-based RNN-LM, which allows us to decode with only the word-based LM, where it provides look-ahead word probabilities to predict next characters instead of the character-based LM, leading competitive accuracy with less computation compared to the multi-level LM. We demonstrate the efficacy of the word-based RNN-LMs using a larger corpus, LibriSpeech, in addition to WSJ we used in the prior work. Furthermore, we show that the proposed model achieves 5.1 %WER for WSJ Eval'92 test set when the vocabulary size is increased, which is the best WER reported for end-to-end ASR systems on this benchmark.
Sequence-to-sequence attention-based models have recently shown very promising results on automatic speech recognition (ASR) tasks, which integrate an acoustic, pronunciation and language model into a single neural network. In these models, the Transformer, a new sequence-to-sequence attention-based model relying entirely on self-attention without using RNNs or convolutions, achieves a new single-model state-of-the-art BLEU on neural machine translation (NMT) tasks. Since the outstanding performance of the Transformer, we extend it to speech and concentrate on it as the basic architecture of sequence-to-sequence attention-based model on Mandarin Chinese ASR tasks. Furthermore, we investigate a comparison between syllable based model and context-independent phoneme (CI-phoneme) based model with the Transformer in Mandarin Chinese. Additionally, a greedy cascading decoder with the Transformer is proposed for mapping CI-phoneme sequences and syllable sequences into word sequences. Experiments on HKUST datasets demonstrate that syllable based model with the Transformer performs better than CI-phoneme based counterpart, and achieves a character error rate (CER) of \emph{$28.77\%$}, which is competitive to the state-of-the-art CER of $28.0\%$ by the joint CTC-attention based encoder-decoder network.
Attention-based encoder-decoder architectures such as Listen, Attend, and Spell (LAS), subsume the acoustic, pronunciation and language model components of a traditional automatic speech recognition (ASR) system into a single neural network. In our previous work, we have shown that such architectures are comparable to state-of-the-art ASR systems on dictation tasks, but it was not clear if such architectures would be practical for more challenging tasks such as voice search. In this work, we explore a variety of structural and optimization improvements to our LAS model which significantly improve performance. On the structural side, we show that word piece models can be used instead of graphemes. We introduce a multi-head attention architecture, which offers improvements over the commonly-used single-head attention. On the optimization side, we explore techniques such as synchronous training, scheduled sampling, label smoothing, and minimum word error rate optimization, which are all shown to improve accuracy. We present results with a unidirectional LSTM encoder for streaming recognition. On a 12,500 hour voice search task, we find that the proposed changes improve the WER of the LAS system from 9.2% to 5.6%, while the best conventional system achieve 6.7% WER. We also test both models on a dictation dataset, and our model provide 4.1% WER while the conventional system provides 5% WER.
Modern communication networks have become very complicated and highly dynamic, which makes them hard to model, predict and control. In this paper, we develop a novel experience-driven approach that can learn to well control a communication network from its own experience rather than an accurate mathematical model, just as a human learns a new skill (such as driving, swimming, etc). Specifically, we, for the first time, propose to leverage emerging Deep Reinforcement Learning (DRL) for enabling model-free control in communication networks; and present a novel and highly effective DRL-based control framework, DRL-TE, for a fundamental networking problem: Traffic Engineering (TE). The proposed framework maximizes a widely-used utility function by jointly learning network environment and its dynamics, and making decisions under the guidance of powerful Deep Neural Networks (DNNs). We propose two new techniques, TE-aware exploration and actor-critic-based prioritized experience replay, to optimize the general DRL framework particularly for TE. To validate and evaluate the proposed framework, we implemented it in ns-3, and tested it comprehensively with both representative and randomly generated network topologies. Extensive packet-level simulation results show that 1) compared to several widely-used baseline methods, DRL-TE significantly reduces end-to-end delay and consistently improves the network utility, while offering better or comparable throughput; 2) DRL-TE is robust to network changes; and 3) DRL-TE consistently outperforms a state-ofthe-art DRL method (for continuous control), Deep Deterministic Policy Gradient (DDPG), which, however, does not offer satisfying performance.
We construct targeted audio adversarial examples on automatic speech recognition. Given any audio waveform, we can produce another that is over 99.9% similar, but transcribes as any phrase we choose (at a rate of up to 50 characters per second). We apply our iterative optimization-based attack to Mozilla's implementation DeepSpeech end-to-end, and show it has a 100% success rate. The feasibility of this attack introduce a new domain to study adversarial examples.