亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this article, we aim to study the stability and dynamic transition of an electrically conducting fluid in the presence of an external uniform horizontal magnetic field and rotation based on a Boussinesq approximation model. By analyzing the spectrum of the linear part of the model and verifying the validity of the principle of exchange of stability, we take a hybrid approach combining theoretical analysis with numerical computation to study the transition from a simple real eigenvalue, a pair of complex conjugate eigenvalues and a real eigenvalue of multiplicity two, respectively. The center manifold reduction theory is applied to reduce the infinite dimensional system to the corresponding finite dimensional one together with one or several non-dimensional transition numbers that determine the dynamic transition types. Careful numerical computations are performed to determine these transition numbers as well as related temporal and flow patterns etc. Our results indicate that both continuous and jump transitions can occur at certain parameter region.

相關內容

The principle of least action is one of the most fundamental physical principle. It says that among all possible motions connecting two points in a phase space, the system will exhibit those motions which extremise an action functional. Many qualitative features of dynamical systems, such as the presence of conservation laws and energy balance equations, are related to the existence of an action functional. Incorporating variational structure into learning algorithms for dynamical systems is, therefore, crucial in order to make sure that the learned model shares important features with the exact physical system. In this paper we show how to incorporate variational principles into trajectory predictions of learned dynamical systems. The novelty of this work is that (1) our technique relies only on discrete position data of observed trajectories. Velocities or conjugate momenta do {\em not} need to be observed or approximated and {\em no} prior knowledge about the form of the variational principle is assumed. Instead, they are recovered using backward error analysis. (2) Moreover, our technique compensates discretisation errors when trajectories are computed from the learned system. This is important when moderate to large step-sizes are used and high accuracy is required. For this, we introduce and rigorously analyse the concept of inverse modified Lagrangians by developing an inverse version of variational backward error analysis. (3) Finally, we introduce a method to perform system identification from position observations only, based on variational backward error analysis.

Double Q-learning is a classical method for reducing overestimation bias, which is caused by taking maximum estimated values in the Bellman operation. Its variants in the deep Q-learning paradigm have shown great promise in producing reliable value prediction and improving learning performance. However, as shown by prior work, double Q-learning is not fully unbiased and suffers from underestimation bias. In this paper, we show that such underestimation bias may lead to multiple non-optimal fixed points under an approximate Bellman operator. To address the concerns of converging to non-optimal stationary solutions, we propose a simple but effective approach as a partial fix for the underestimation bias in double Q-learning. This approach leverages an approximate dynamic programming to bound the target value. We extensively evaluate our proposed method in the Atari benchmark tasks and demonstrate its significant improvement over baseline algorithms.

Networks can describe the structure of a wide variety of complex systems by specifying which pairs of entities in the system are connected. While such pairwise representations are flexible, they are not necessarily appropriate when the fundamental interactions involve more than two entities at the same time. Pairwise representations nonetheless remain ubiquitous, because higher-order interactions are often not recorded explicitly in network data. Here, we introduce a Bayesian approach to reconstruct latent higher-order interactions from ordinary pairwise network data. Our method is based on the principle of parsimony and only includes higher-order structures when there is sufficient statistical evidence for them. We demonstrate its applicability to a wide range of datasets, both synthetic and empirical.

Next generation reservoir computing based on nonlinear vector autoregression (NVAR) is applied to emulate simple dynamical system models and compared to numerical integration schemes such as Euler and the $2^\text{nd}$ order Runge-Kutta. It is shown that the NVAR emulator can be interpreted as a data-driven method used to recover the numerical integration scheme that produced the data. It is also shown that the approach can be extended to produce high-order numerical schemes directly from data. The impacts of the presence of noise and temporal sparsity in the training set is further examined to gauge the potential use of this method for more realistic applications.

We develop a methodology to construct low-dimensional predictive models from data sets representing essentially nonlinear (or non-linearizable) dynamical systems with a hyperbolic linear part that are subject to external forcing with finitely many frequencies. Our data-driven, sparse, nonlinear models are obtained as extended normal forms of the reduced dynamics on low-dimensional, attracting spectral submanifolds (SSMs) of the dynamical system. We illustrate the power of data-driven SSM reduction on high-dimensional numerical data sets and experimental measurements involving beam oscillations, vortex shedding and sloshing in a water tank. We find that SSM reduction trained on unforced data also predicts nonlinear response accurately under additional external forcing.

This paper is concerned with the asymptotic distribution of the largest eigenvalues for some nonlinear random matrix ensemble stemming from the study of neural networks. More precisely we consider $M= \frac{1}{m} YY^\top$ with $Y=f(WX)$ where $W$ and $X$ are random rectangular matrices with i.i.d. centered entries. This models the data covariance matrix or the Conjugate Kernel of a single layered random Feed-Forward Neural Network. The function $f$ is applied entrywise and can be seen as the activation function of the neural network. We show that the largest eigenvalue has the same limit (in probability) as that of some well-known linear random matrix ensembles. In particular, we relate the asymptotic limit of the largest eigenvalue for the nonlinear model to that of an information-plus-noise random matrix, establishing a possible phase transition depending on the function $f$ and the distribution of $W$ and $X$. This may be of interest for applications to machine learning.

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.

Graph Convolutional Network (GCN) has been widely applied in transportation demand prediction due to its excellent ability to capture non-Euclidean spatial dependence among station-level or regional transportation demands. However, in most of the existing research, the graph convolution was implemented on a heuristically generated adjacency matrix, which could neither reflect the real spatial relationships of stations accurately, nor capture the multi-level spatial dependence of demands adaptively. To cope with the above problems, this paper provides a novel graph convolutional network for transportation demand prediction. Firstly, a novel graph convolution architecture is proposed, which has different adjacency matrices in different layers and all the adjacency matrices are self-learned during the training process. Secondly, a layer-wise coupling mechanism is provided, which associates the upper-level adjacency matrix with the lower-level one. It also reduces the scale of parameters in our model. Lastly, a unitary network is constructed to give the final prediction result by integrating the hidden spatial states with gated recurrent unit, which could capture the multi-level spatial dependence and temporal dynamics simultaneously. Experiments have been conducted on two real-world datasets, NYC Citi Bike and NYC Taxi, and the results demonstrate the superiority of our model over the state-of-the-art ones.

Graph neural networks (GNNs) are typically applied to static graphs that are assumed to be known upfront. This static input structure is often informed purely by insight of the machine learning practitioner, and might not be optimal for the actual task the GNN is solving. In absence of reliable domain expertise, one might resort to inferring the latent graph structure, which is often difficult due to the vast search space of possible graphs. Here we introduce Pointer Graph Networks (PGNs) which augment sets or graphs with additional inferred edges for improved model expressivity. PGNs allow each node to dynamically point to another node, followed by message passing over these pointers. The sparsity of this adaptable graph structure makes learning tractable while still being sufficiently expressive to simulate complex algorithms. Critically, the pointing mechanism is directly supervised to model long-term sequences of operations on classical data structures, incorporating useful structural inductive biases from theoretical computer science. Qualitatively, we demonstrate that PGNs can learn parallelisable variants of pointer-based data structures, namely disjoint set unions and link/cut trees. PGNs generalise out-of-distribution to 5x larger test inputs on dynamic graph connectivity tasks, outperforming unrestricted GNNs and Deep Sets.

Graph Convolutional Networks (GCNs) and their variants have experienced significant attention and have become the de facto methods for learning graph representations. GCNs derive inspiration primarily from recent deep learning approaches, and as a result, may inherit unnecessary complexity and redundant computation. In this paper, we reduce this excess complexity through successively removing nonlinearities and collapsing weight matrices between consecutive layers. We theoretically analyze the resulting linear model and show that it corresponds to a fixed low-pass filter followed by a linear classifier. Notably, our experimental evaluation demonstrates that these simplifications do not negatively impact accuracy in many downstream applications. Moreover, the resulting model scales to larger datasets, is naturally interpretable, and yields up to two orders of magnitude speedup over FastGCN.

北京阿比特科技有限公司