Contemporary large language models (LLMs) primarily rely on next-token prediction method for inference, which significantly impedes their processing speed. In this paper, we introduce a novel inference methodology termed next-sentence prediction, aimed at enhancing the inference efficiency of LLMs. We present Sentence Variational Autoencoder (SentenceVAE), a tiny model consisting of a Sentence Encoder and a Sentence Decoder. The encoder effectively condenses the information within a sentence into a singular token, while the decoder reconstructs this compressed data back into its original sentential form. By integrating SentenceVAE into the input and output layers of LLMs, we develop Sentence-level LLMs (SLLMs) that employ a sentence-by-sentence inference approach, markedly accelerating inference speeds. SentenceVAE also maintains the integrity of the original semantic content by segmenting the text into sentences, thereby improving accuracy while boosting inference speeds. Compared to published LLMs, SLLMs process fewer tokens over equivalent context lengths, significantly reducing memory demands for self-attention computations and facilitating the handling of longer contexts. Our experimental findings reveal that this method can accelerate inference speeds by 204~365%, reduce perplexity (PPL) to 46~75% of its original metric, and decrease memory overhead by 86~91% for the same context length, compared to the token-by-token method. Moreover, the benefits of this approach become even more pronounced as model parameters increase.
Recent advancements in large language models (LLMs) have raised concerns about inference costs, increasing the need for research into model compression. While knowledge distillation (KD) is a prominent method for this, research on KD for generative language models like LLMs is relatively sparse, and the approach of distilling student-friendly knowledge, which has shown promising performance in KD for classification models, remains unexplored in generative language models. To explore this approach, we propose PromptKD, a simple yet effective method that utilizes prompt tuning - for the first time in KD - to enable generative language models to transfer student-friendly knowledge. Unlike previous works in classification that require fine-tuning the entire teacher model for extracting student-friendly knowledge, PromptKD achieves similar effects by adding a small number of prompt tokens and tuning only the prompt with student guidance. Extensive experiments on instruction-following datasets show that PromptKD achieves state-of-the-art performance while adding only 0.0007% of the teacher's parameters as prompts. Further analysis suggests that distilling student-friendly knowledge alleviates exposure bias effectively throughout the entire training process, leading to performance enhancements.
Recently, there has been a significant upsurge of interest in leveraging large language models (LLMs) to assist scientific discovery. However, most LLMs only focus on general science, while they lack domain-specific knowledge, such as chemical molecules and amino acid sequences. To bridge these gaps, we introduce SciDFM, a mixture-of-experts LLM, which is trained from scratch and is able to conduct college-level scientific reasoning and understand molecules and amino acid sequences. We collect a large-scale training corpus containing numerous scientific papers and books from different disciplines as well as data from domain-specific databases. We further fine-tune the pre-trained model on lots of instruction data to improve performances on downstream benchmarks. From experiment results, we show that SciDFM achieves strong performance on general scientific benchmarks such as SciEval and SciQ, and it reaches a SOTA performance on domain-specific benchmarks among models of similar size. We further analyze the expert layers and show that the results of expert selection vary with data from different disciplines. To benefit the broader research community, we open-source SciDFM at //huggingface.co/OpenDFM/SciDFM-MoE-A5.6B-v1.0.
Large language models (LLMs) with long-context processing are still challenging because of their implementation complexity, training efficiency and data sparsity. To address this issue, a new paradigm named Online Long-context Processing (OLP) is proposed when we process a document of unlimited length, which typically occurs in the information reception and organization of diverse streaming media such as automated news reporting, live e-commerce, and viral short videos. Moreover, a dilemma was often encountered when we tried to select the most suitable LLM from a large number of LLMs amidst explosive growth aiming for outstanding performance, affordable prices, and short response delays. In view of this, we also develop Role Reinforcement Learning (Role-RL) to automatically deploy different LLMs in their respective roles within the OLP pipeline according to their actual performance. Extensive experiments are conducted on our OLP-MINI dataset and it is found that OLP with Role-RL framework achieves OLP benchmark with an average recall rate of 93.2% and the LLM cost saved by 79.4%. The code and dataset are publicly available at: //anonymous.4open.science/r/Role-RL.
While large language models (LLMs) have made notable advancements in natural language processing, they continue to struggle with processing extensive text. Memory mechanism offers a flexible solution for managing long contexts, utilizing techniques such as compression, summarization, and structuring to facilitate nuanced and efficient handling of large volumes of text. However, existing techniques face challenges with static knowledge integration, leading to insufficient adaptation to task-specific needs and missing multi-segmentation relationships, which hinders the dynamic reorganization and logical combination of relevant segments during the response process. To address these issues, we introduce a novel strategy, Question then Reflection Memory Mechanism (QRMeM), incorporating a dual-structured memory pool. This pool synergizes static textual content with structured graph guidance, fostering a reflective trial-and-error approach for navigating and identifying relevant segments. Our evaluation across multiple-choice questions (MCQ) and multi-document question answering (Multi-doc QA) benchmarks showcases QRMeM enhanced performance compared to existing approaches.
Despite recent advancements in large language models (LLMs), their performance on complex reasoning problems requiring multi-step thinking and combining various skills is still limited. To address this, we propose a novel framework HDFlow for complex reasoning with LLMs that combines fast and slow thinking modes in an adaptive manner. Our approach consists of two key components: 1) a new approach for slow, deliberate reasoning called Dynamic Workflow, which automatically decomposes complex problems into more manageable sub-tasks and dynamically designs a workflow to assemble specialized LLM or symbolic reasoning tools to solve sub-tasks; 2) Hybrid Thinking, a general framework that dynamically combines fast and slow thinking based on problem complexity. Finally, we propose an easy-to-scale method for automatically synthesizing a large-scale dataset of 27K challenging reasoning problems for complex reasoning and a hybrid thinking tuning method that trains smaller LLMs on this dataset to internalize the fast/slow hybrid reasoning strategies. Experiments on four reasoning benchmark datasets demonstrate that our slow thinking with dynamic workflows significantly outperforms Chain-of-Thought, and hybrid thinking achieves the highest accuracy while providing an effective balance between computational efficiency and performance. Fine-tuning using our hybrid thinking approach also significantly boosts the complex reasoning capabilities of open-source language models. The results showcase the promise of slow thinking, dynamic workflows, and hybrid thinking in expanding the frontier of complex problem-solving with LLMs\footnote{Code and data will be released at \url{//github.com/wenlinyao/HDFlow}.}.
In-context learning (ICL) refers to a remarkable capability of pretrained large language models, which can learn a new task given a few examples during inference. However, theoretical understanding of ICL is largely under-explored, particularly whether transformers can be trained to generalize to unseen examples in a prompt, which will require the model to acquire contextual knowledge of the prompt for generalization. This paper investigates the training dynamics of transformers by gradient descent through the lens of non-linear regression tasks. The contextual generalization here can be attained via learning the template function for each task in-context, where all template functions lie in a linear space with $m$ basis functions. We analyze the training dynamics of one-layer multi-head transformers to in-contextly predict unlabeled inputs given partially labeled prompts, where the labels contain Gaussian noise and the number of examples in each prompt are not sufficient to determine the template. Under mild assumptions, we show that the training loss for a one-layer multi-head transformer converges linearly to a global minimum. Moreover, the transformer effectively learns to perform ridge regression over the basis functions. To our knowledge, this study is the first provable demonstration that transformers can learn contextual (i.e., template) information to generalize to both unseen examples and tasks when prompts contain only a small number of query-answer pairs.
As large language models (LLMs) evolve to handle increasingly longer contexts, serving inference requests for context lengths in the range of millions of tokens presents unique challenges. While existing techniques are effective for training, they fail to address the unique challenges of inference, such as varying prefill and decode phases and their associated latency constraints - like Time to First Token (TTFT) and Time Between Tokens (TBT). Furthermore, there are no long context inference solutions that allow batching requests to increase the hardware utilization today. In this paper, we propose three key innovations for efficient interactive long context LLM inference, without resorting to any approximation: adaptive chunking to reduce prefill overheads in mixed batching, Sequence Pipeline Parallelism (SPP) to lower TTFT, and KV Cache Parallelism (KVP) to minimize TBT. These contributions are combined into a 3D parallelism strategy, enabling Mnemosyne to scale interactive inference to context lengths at least up to 10 million tokens with high throughput enabled with batching. To our knowledge, Mnemosyne is the first to be able to achieve support for 10 million long context inference efficiently, while satisfying production-grade SLOs on TBT (30ms) on contexts up to and including 10 million.
While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.
The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.
Pre-trained language representation models, such as BERT, capture a general language representation from large-scale corpora, but lack domain-specific knowledge. When reading a domain text, experts make inferences with relevant knowledge. For machines to achieve this capability, we propose a knowledge-enabled language representation model (K-BERT) with knowledge graphs (KGs), in which triples are injected into the sentences as domain knowledge. However, too much knowledge incorporation may divert the sentence from its correct meaning, which is called knowledge noise (KN) issue. To overcome KN, K-BERT introduces soft-position and visible matrix to limit the impact of knowledge. K-BERT can easily inject domain knowledge into the models by equipped with a KG without pre-training by-self because it is capable of loading model parameters from the pre-trained BERT. Our investigation reveals promising results in twelve NLP tasks. Especially in domain-specific tasks (including finance, law, and medicine), K-BERT significantly outperforms BERT, which demonstrates that K-BERT is an excellent choice for solving the knowledge-driven problems that require experts.