We introduce LLaVA-Critic, the first open-source large multimodal model (LMM) designed as a generalist evaluator to assess performance across a wide range of multimodal tasks. LLaVA-Critic is trained using a high-quality critic instruction-following dataset that incorporates diverse evaluation criteria and scenarios. Our experiments demonstrate the model's effectiveness in two key areas: (1) LMM-as-a-Judge, where LLaVA-Critic provides reliable evaluation scores, performing on par with or surpassing GPT models on multiple evaluation benchmarks; and (2) Preference Learning, where it generates reward signals for preference learning, enhancing model alignment capabilities. This work underscores the potential of open-source LMMs in self-critique and evaluation, setting the stage for future research into scalable, superhuman alignment feedback mechanisms for LMMs.
Smart contracts, primarily written in Solidity, are integral to blockchain software applications, yet precise analysis and maintenance are hindered by the limitations of existing differencing tools. We introduce SoliDiffy, a novel Abstract Syntax Tree (AST) differencing tool specifically designed for Solidity. SoliDiffy enables fine-grained analysis by generating accurate and concise edit scripts of smart contracts, making it ideal for downstream tasks such as vulnerability detection, automated code repair, and code reviews. Our comprehensive evaluation on a large dataset of real-world Solidity contracts demonstrates that SoliDiffy delivers shorter and more precise edit scripts compared to state-of-the-art tools, while performing consistently in complex contract modifications. SoliDiffy is made publicly available at //github.com/mojtaba-eshghie/SoliDiffy.
Recent advances in Large Language Models (LLMs) have significantly shaped the applications of AI in multiple fields, including the studies of legal intelligence. Trained on extensive legal texts, including statutes and legal documents, the legal LLMs can capture important legal knowledge/concepts effectively and provide important support for downstream legal applications such as legal consultancy. Yet, the dynamic nature of legal statutes and interpretations also poses new challenges to the use of LLMs in legal applications. Particularly, how to update the legal knowledge of LLMs effectively and efficiently has become an important research problem in practice. Existing benchmarks for evaluating knowledge update methods are mostly designed for the open domain and cannot address the specific challenges of the legal domain, such as the nuanced application of new legal knowledge, the complexity and lengthiness of legal regulations, and the intricate nature of legal reasoning. To address this gap, we introduce the Legal Knowledge Update BEnchmark, i.e. LeKUBE, which evaluates knowledge update methods for legal LLMs across five dimensions. Specifically, we categorize the needs of knowledge updates in the legal domain with the help of legal professionals, and then hire annotators from law schools to create synthetic updates to the Chinese Criminal and Civil Code as well as sets of questions of which the answers would change after the updates. Through a comprehensive evaluation of state-of-the-art knowledge update methods, we reveal a notable gap between existing knowledge update methods and the unique needs of the legal domain, emphasizing the need for further research and development of knowledge update mechanisms tailored for legal LLMs.
Quantization of foundational models (FMs) is significantly more challenging than traditional DNNs due to the emergence of large magnitude features called outliers. Existing outlier-aware algorithm/architecture co-design techniques either use mixed-precision, retaining outliers at high precision but compromise hardware efficiency, or quantize inliers and outliers at the same precision, improving hardware efficiency at the cost of accuracy. To address this mutual exclusivity, in this paper, we propose MicroScopiQ, a novel co-design technique that leverages pruning to complement outlier-aware quantization. MicroScopiQ retains outliers at higher precision while pruning a certain fraction of least important weights to distribute the additional outlier bits; ensuring high accuracy, aligned memory and hardware efficiency. We design a high-throughput, low overhead accelerator architecture composed of simple multi-precision INT processing elements and a novel network-on-chip called ReCoN that efficiently abstracts the complexity of supporting high-precision outliers. Additionally, unlike existing alternatives, MicroScopiQ does not assume any locality of outlier weights, enabling applicability to a broad range of FMs. Extensive experiments across various quantization settings show that MicroScopiQ achieves SoTA quantization performance while simultaneously improving inference performance by 3x and reducing energy by 2x over existing alternatives.
We introduce INQUIRE, a text-to-image retrieval benchmark designed to challenge multimodal vision-language models on expert-level queries. INQUIRE includes iNaturalist 2024 (iNat24), a new dataset of five million natural world images, along with 250 expert-level retrieval queries. These queries are paired with all relevant images comprehensively labeled within iNat24, comprising 33,000 total matches. Queries span categories such as species identification, context, behavior, and appearance, emphasizing tasks that require nuanced image understanding and domain expertise. Our benchmark evaluates two core retrieval tasks: (1) INQUIRE-Fullrank, a full dataset ranking task, and (2) INQUIRE-Rerank, a reranking task for refining top-100 retrievals. Detailed evaluation of a range of recent multimodal models demonstrates that INQUIRE poses a significant challenge, with the best models failing to achieve an mAP@50 above 50%. In addition, we show that reranking with more powerful multimodal models can enhance retrieval performance, yet there remains a significant margin for improvement. By focusing on scientifically-motivated ecological challenges, INQUIRE aims to bridge the gap between AI capabilities and the needs of real-world scientific inquiry, encouraging the development of retrieval systems that can assist with accelerating ecological and biodiversity research. Our dataset and code are available at //inquire-benchmark.github.io
This paper introduces H-MaP, a hybrid sequential manipulation planner that addresses complex tasks requiring both sequential actions and dynamic contact mode switches. Our approach reduces configuration space dimensionality by decoupling object trajectory planning from manipulation planning through object-based waypoint generation, informed contact sampling, and optimization-based motion planning. This architecture enables handling of challenging scenarios involving tool use, auxiliary object manipulation, and bimanual coordination. Experimental results across seven diverse tasks demonstrate H-MaP's superior performance compared to existing methods, particularly in highly constrained environments where traditional approaches fail due to local minima or scalability issues. The planner's effectiveness is validated through both simulation and real-robot experiments.
Understanding trajectories in multi-agent scenarios requires addressing various tasks, including predicting future movements, imputing missing observations, inferring the status of unseen agents, and classifying different global states. Traditional data-driven approaches often handle these tasks separately with specialized models. We introduce TranSPORTmer, a unified transformer-based framework capable of addressing all these tasks, showcasing its application to the intricate dynamics of multi-agent sports scenarios like soccer and basketball. Using Set Attention Blocks, TranSPORTmer effectively captures temporal dynamics and social interactions in an equivariant manner. The model's tasks are guided by an input mask that conceals missing or yet-to-be-predicted observations. Additionally, we introduce a CLS extra agent to classify states along soccer trajectories, including passes, possessions, uncontrolled states, and out-of-play intervals, contributing to an enhancement in modeling trajectories. Evaluations on soccer and basketball datasets show that TranSPORTmer outperforms state-of-the-art task-specific models in player forecasting, player forecasting-imputation, ball inference, and ball imputation. //youtu.be/8VtSRm8oGoE
The Segment Anything Model (SAM), a profound vision foundation model pretrained on a large-scale dataset, breaks the boundaries of general segmentation and sparks various downstream applications. This paper introduces Hi-SAM, a unified model leveraging SAM for hierarchical text segmentation. Hi-SAM excels in segmentation across four hierarchies, including pixel-level text, word, text-line, and paragraph, while realizing layout analysis as well. Specifically, we first turn SAM into a high-quality pixel-level text segmentation (TS) model through a parameter-efficient fine-tuning approach. We use this TS model to iteratively generate the pixel-level text labels in a semi-automatical manner, unifying labels across the four text hierarchies in the HierText dataset. Subsequently, with these complete labels, we launch the end-to-end trainable Hi-SAM based on the TS architecture with a customized hierarchical mask decoder. During inference, Hi-SAM offers both automatic mask generation (AMG) mode and promptable segmentation (PS) mode. In the AMG mode, Hi-SAM segments pixel-level text foreground masks initially, then samples foreground points for hierarchical text mask generation and achieves layout analysis in passing. As for the PS mode, Hi-SAM provides word, text-line, and paragraph masks with a single point click. Experimental results show the state-of-the-art performance of our TS model: 84.86% fgIOU on Total-Text and 88.96% fgIOU on TextSeg for pixel-level text segmentation. Moreover, compared to the previous specialist for joint hierarchical detection and layout analysis on HierText, Hi-SAM achieves significant improvements: 4.73% PQ and 5.39% F1 on the text-line level, 5.49% PQ and 7.39% F1 on the paragraph level layout analysis, requiring $20\times$ fewer training epochs. The code is available at //github.com/ymy-k/Hi-SAM.
Recently, there is a growing interest in creating computer-aided design (CAD) models based on user intent, known as controllable CAD generation. Existing work offers limited controllability and needs separate models for different types of control, reducing efficiency and practicality. To achieve controllable generation across all CAD construction hierarchies, such as sketch-extrusion, extrusion, sketch, face, loop and curve, we propose FlexCAD, a unified model by fine-tuning large language models (LLMs). First, to enhance comprehension by LLMs, we represent a CAD model as a structured text by abstracting each hierarchy as a sequence of text tokens. Second, to address various controllable generation tasks in a unified model, we introduce a hierarchy-aware masking strategy. Specifically, during training, we mask a hierarchy-aware field in the CAD text with a mask token. This field, composed of a sequence of tokens, can be set flexibly to represent various hierarchies. Subsequently, we ask LLMs to predict this masked field. During inference, the user intent is converted into a CAD text with a mask token replacing the part the user wants to modify, which is then fed into FlexCAD to generate new CAD models. Comprehensive experiments on public dataset demonstrate the effectiveness of FlexCAD in both generation quality and controllability. Code will be available at //github.com/microsoft/CADGeneration/FlexCAD.
We present MMKG, a collection of three knowledge graphs that contain both numerical features and (links to) images for all entities as well as entity alignments between pairs of KGs. Therefore, multi-relational link prediction and entity matching communities can benefit from this resource. We believe this data set has the potential to facilitate the development of novel multi-modal learning approaches for knowledge graphs.We validate the utility ofMMKG in the sameAs link prediction task with an extensive set of experiments. These experiments show that the task at hand benefits from learning of multiple feature types.
This paper describes a general framework for learning Higher-Order Network Embeddings (HONE) from graph data based on network motifs. The HONE framework is highly expressive and flexible with many interchangeable components. The experimental results demonstrate the effectiveness of learning higher-order network representations. In all cases, HONE outperforms recent embedding methods that are unable to capture higher-order structures with a mean relative gain in AUC of $19\%$ (and up to $75\%$ gain) across a wide variety of networks and embedding methods.