With the increasing use of multi-cloud environments, security professionals face challenges in configuration, management, and integration due to uneven security capabilities and features among providers. As a result, a fragmented approach toward security has been observed, leading to new attack vectors and potential vulnerabilities. Other research has focused on single-cloud platforms or specific applications of multi-cloud environments. Therefore, there is a need for a holistic security and vulnerability assessment and defense strategy that applies to multi-cloud platforms. We perform a risk and vulnerability analysis to identify attack vectors from software, hardware, and the network, as well as interoperability security issues in multi-cloud environments. Applying the STRIDE and DREAD threat modeling methods, we present an analysis of the ecosystem across six attack vectors: cloud architecture, APIs, authentication, automation, management differences, and cybersecurity legislation. We quantitatively determine and rank the threats in multi-cloud environments and suggest mitigation strategies.
An accurate data-based prediction of the long-term evolution of Hamiltonian systems requires a network that preserves the appropriate structure under each time step. Every Hamiltonian system contains two essential ingredients: the Poisson bracket and the Hamiltonian. Hamiltonian systems with symmetries, whose paradigm examples are the Lie-Poisson systems, have been shown to describe a broad category of physical phenomena, from satellite motion to underwater vehicles, fluids, geophysical applications, complex fluids, and plasma physics. The Poisson bracket in these systems comes from the symmetries, while the Hamiltonian comes from the underlying physics. We view the symmetry of the system as primary, hence the Lie-Poisson bracket is known exactly, whereas the Hamiltonian is regarded as coming from physics and is considered not known, or known approximately. Using this approach, we develop a network based on transformations that exactly preserve the Poisson bracket and the special functions of the Lie-Poisson systems (Casimirs) to machine precision. We present two flavors of such systems: one, where the parameters of transformations are computed from data using a dense neural network (LPNets), and another, where the composition of transformations is used as building blocks (G-LPNets). We also show how to adapt these methods to a larger class of Poisson brackets. We apply the resulting methods to several examples, such as rigid body (satellite) motion, underwater vehicles, a particle in a magnetic field, and others. The methods developed in this paper are important for the construction of accurate data-based methods for simulating the long-term dynamics of physical systems.
Self-adaptation is a crucial feature of autonomous systems that must cope with uncertainties in, e.g., their environment and their internal state. Self-adaptive systems are often modelled as two-layered systems with a managed subsystem handling the domain concerns and a managing subsystem implementing the adaptation logic. We consider a case study of a self-adaptive robotic system; more concretely, an autonomous underwater vehicle (AUV) used for pipeline inspection. In this paper, we model and analyse it with the feature-aware probabilistic model checker ProFeat. The functionalities of the AUV are modelled in a feature model, capturing the AUV's variability. This allows us to model the managed subsystem of the AUV as a family of systems, where each family member corresponds to a valid feature configuration of the AUV. The managing subsystem of the AUV is modelled as a control layer capable of dynamically switching between such valid feature configurations, depending both on environmental and internal conditions. We use this model to analyse probabilistic reward and safety properties for the AUV.
Recent years have witnessed significant advances in technologies and services in modern network applications, including smart grid management, wireless communication, cybersecurity as well as multi-agent autonomous systems. Considering the heterogeneous nature of networked entities, emerging network applications call for game-theoretic models and learning-based approaches in order to create distributed network intelligence that responds to uncertainties and disruptions in a dynamic or an adversarial environment. This paper articulates the confluence of networks, games and learning, which establishes a theoretical underpinning for understanding multi-agent decision-making over networks. We provide an selective overview of game-theoretic learning algorithms within the framework of stochastic approximation theory, and associated applications in some representative contexts of modern network systems, such as the next generation wireless communication networks, the smart grid and distributed machine learning. In addition to existing research works on game-theoretic learning over networks, we highlight several new angles and research endeavors on learning in games that are related to recent developments in artificial intelligence. Some of the new angles extrapolate from our own research interests. The overall objective of the paper is to provide the reader a clear picture of the strengths and challenges of adopting game-theoretic learning methods within the context of network systems, and further to identify fruitful future research directions on both theoretical and applied studies.
Motivated by real-world applications such as rental and cloud computing services, we investigate pricing for reusable resources. We consider a system where a single resource with a fixed number of identical copies serves customers with heterogeneous willingness-to-pay (WTP), and the usage duration distribution is general. Optimal dynamic policies are computationally intractable when usage durations are not memoryless, so existing literature has focused on static pricing, whose steady-state reward rate converges to optimality at rate $\mathcal{O}(c^{-1/2})$ when supply and demand scale with $c$. We show, however, that this convergence rate is suboptimal, and propose a class of dynamic "stock-dependent" policies that 1) preserves computational tractability and 2) has a steady-state reward rate converging to optimality faster than $c^{-1/2}$. We characterize the tight convergence rate for stock-dependent policies and show that they can in fact be achieved by a simple two-price policy, that sets a higher price when the stock is below some threshold and a lower price otherwise. Finally, we demonstrate this "minimally dynamic" class of two-price policies to perform well numerically, even in non-asymptotic settings, suggesting that a little dynamicity can go a long way.
The scale and complexity of workloads in modern cloud services have brought into sharper focus a critical challenge in automated index tuning -- the need to recommend high-quality indexes while maintaining index tuning scalability. This challenge is further compounded by the requirement for automated index implementations to introduce minimal query performance regressions in production deployments, representing a significant barrier to achieving scalability and full automation. This paper directs attention to these challenges within automated index tuning and explores ways in which machine learning (ML) techniques provide new opportunities in their mitigation. In particular, we reflect on recent efforts in developing ML techniques for workload selection, candidate index filtering, speeding up index configuration search, reducing the amount of query optimizer calls, and lowering the chances of performance regressions. We highlight the key takeaways from these efforts and underline the gaps that need to be closed for their effective functioning within the traditional index tuning framework. Additionally, we present a preliminary cross-platform design aimed at democratizing index tuning across multiple SQL-like systems -- an imperative in today's continuously expanding data system landscape. We believe our findings will help provide context and impetus to the research and development efforts in automated index tuning.
Searchable encrypted (SE) indexing systems are a useful tool for utilizing cloud services to store and manage sensitive information. However, much of the work on SE systems to date has remained theoretical. In order to make them of practical use, more work is needed to develop optimal protocols and working models for them. This includes, in particular, the creation of a working update model in order to maintain an encrypted index of a dynamic document set such as an email inbox. I have created a working, real-world end-to-end SE implementation that satisfies these needs, including the first empirical performance evaluation of the dynamic SE update operation. In doing so, I show a viable path to move from the theoretical concepts described by previous researchers to a future production-worthy implementation and identify issues for follow-on investigation.
Advances in networks, accelerators, and cloud services encourage programmers to reconsider where to compute -- such as when fast networks make it cost-effective to compute on remote accelerators despite added latency. Workflow and cloud-hosted serverless computing frameworks can manage multi-step computations spanning federated collections of cloud, high-performance computing (HPC), and edge systems, but passing data among computational steps via cloud storage can incur high costs. Here, we overcome this obstacle with a new programming paradigm that decouples control flow from data flow by extending the pass-by-reference model to distributed applications. We describe ProxyStore, a system that implements this paradigm by providing object proxies that act as wide-area object references with just-in-time resolution. This proxy model enables data producers to communicate data unilaterally, transparently, and efficiently to both local and remote consumers. We demonstrate the benefits of this model with synthetic benchmarks and real-world scientific applications, running across various computing platforms.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
Recommender systems exploit interaction history to estimate user preference, having been heavily used in a wide range of industry applications. However, static recommendation models are difficult to answer two important questions well due to inherent shortcomings: (a) What exactly does a user like? (b) Why does a user like an item? The shortcomings are due to the way that static models learn user preference, i.e., without explicit instructions and active feedback from users. The recent rise of conversational recommender systems (CRSs) changes this situation fundamentally. In a CRS, users and the system can dynamically communicate through natural language interactions, which provide unprecedented opportunities to explicitly obtain the exact preference of users. Considerable efforts, spread across disparate settings and applications, have been put into developing CRSs. Existing models, technologies, and evaluation methods for CRSs are far from mature. In this paper, we provide a systematic review of the techniques used in current CRSs. We summarize the key challenges of developing CRSs into five directions: (1) Question-based user preference elicitation. (2) Multi-turn conversational recommendation strategies. (3) Dialogue understanding and generation. (4) Exploitation-exploration trade-offs. (5) Evaluation and user simulation. These research directions involve multiple research fields like information retrieval (IR), natural language processing (NLP), and human-computer interaction (HCI). Based on these research directions, we discuss some future challenges and opportunities. We provide a road map for researchers from multiple communities to get started in this area. We hope this survey helps to identify and address challenges in CRSs and inspire future research.
Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.