亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the increasing number and sophistication of malware attacks, malware detection systems based on machine learning (ML) grow in importance. At the same time, many popular ML models used in malware classification are supervised solutions. These supervised classifiers often do not generalize well to novel malware. Therefore, they need to be re-trained frequently to detect new malware specimens, which can be time-consuming. Our work addresses this problem in a hybrid framework of theoretical Quantum ML, combined with feature selection strategies to reduce the data size and malware classifier training time. The preliminary results show that VQC with XGBoost selected features can get a 78.91% test accuracy on the simulator. The average accuracy for the model trained using the features selected with XGBoost was 74% (+- 11.35%) on the IBM 5 qubits machines.

相關內容

機(ji)器(qi)學習(xi)(Machine Learning)是一(yi)個研(yan)(yan)(yan)究(jiu)計(ji)算學習(xi)方(fang)法(fa)的(de)(de)(de)國際論(lun)(lun)(lun)壇。該雜志發表(biao)文(wen)(wen)(wen)章,報告(gao)廣泛的(de)(de)(de)學習(xi)方(fang)法(fa)應(ying)用(yong)(yong)于各種學習(xi)問題(ti)的(de)(de)(de)實(shi)質性結(jie)果。該雜志的(de)(de)(de)特色論(lun)(lun)(lun)文(wen)(wen)(wen)描述研(yan)(yan)(yan)究(jiu)的(de)(de)(de)問題(ti)和(he)方(fang)法(fa),應(ying)用(yong)(yong)研(yan)(yan)(yan)究(jiu)和(he)研(yan)(yan)(yan)究(jiu)方(fang)法(fa)的(de)(de)(de)問題(ti)。有關(guan)學習(xi)問題(ti)或方(fang)法(fa)的(de)(de)(de)論(lun)(lun)(lun)文(wen)(wen)(wen)通過(guo)實(shi)證研(yan)(yan)(yan)究(jiu)、理論(lun)(lun)(lun)分析或與心理現象的(de)(de)(de)比較提供了(le)(le)堅實(shi)的(de)(de)(de)支持。應(ying)用(yong)(yong)論(lun)(lun)(lun)文(wen)(wen)(wen)展(zhan)示了(le)(le)如何應(ying)用(yong)(yong)學習(xi)方(fang)法(fa)來解決重(zhong)要(yao)的(de)(de)(de)應(ying)用(yong)(yong)問題(ti)。研(yan)(yan)(yan)究(jiu)方(fang)法(fa)論(lun)(lun)(lun)文(wen)(wen)(wen)改(gai)進(jin)了(le)(le)機(ji)器(qi)學習(xi)的(de)(de)(de)研(yan)(yan)(yan)究(jiu)方(fang)法(fa)。所有的(de)(de)(de)論(lun)(lun)(lun)文(wen)(wen)(wen)都以(yi)其他研(yan)(yan)(yan)究(jiu)人(ren)員可以(yi)驗(yan)證或復(fu)制的(de)(de)(de)方(fang)式(shi)描述了(le)(le)支持證據。論(lun)(lun)(lun)文(wen)(wen)(wen)還詳細說明了(le)(le)學習(xi)的(de)(de)(de)組(zu)成(cheng)部分,并(bing)討論(lun)(lun)(lun)了(le)(le)關(guan)于知識(shi)表(biao)示和(he)性能任務的(de)(de)(de)假設(she)。 官網(wang)地址:

Large Language Models (LLMs) have exhibited remarkable reasoning capabilities and become the foundation of language technologies. Inspired by the great success of code data in training LLMs, we naturally wonder at which training stage introducing code data can really help LLMs reasoning. To this end, this paper systematically explores the impact of code data on LLMs at different stages. Concretely, we introduce the code data at the pre-training stage, instruction-tuning stage, and both of them, respectively. Then, the reasoning capability of LLMs is comprehensively and fairly evaluated via six reasoning tasks in five domains. We critically analyze the experimental results and provide conclusions with insights. First, pre-training LLMs with the mixture of code and text can significantly enhance LLMs' general reasoning capability almost without negative transfer on other tasks. Besides, at the instruction-tuning stage, code data endows LLMs the task-specific reasoning capability. Moreover, the dynamic mixing strategy of code and text data assists LLMs to learn reasoning capability step-by-step during training. These insights deepen the understanding of LLMs regarding reasoning ability for their application, such as scientific question answering, legal support, etc. The source code and model parameters are released at the link:~\url{//github.com/yingweima2022/CodeLLM}.

ASR error correction is an interesting option for post processing speech recognition system outputs. These error correction models are usually trained in a supervised fashion using the decoding results of a target ASR system. This approach can be computationally intensive and the model is tuned to a specific ASR system. Recently generative large language models (LLMs) have been applied to a wide range of natural language processing tasks, as they can operate in a zero-shot or few shot fashion. In this paper we investigate using ChatGPT, a generative LLM, for ASR error correction. Based on the ASR N-best output, we propose both unconstrained and constrained, where a member of the N-best list is selected, approaches. Additionally, zero and 1-shot settings are evaluated. Experiments show that this generative LLM approach can yield performance gains for two different state-of-the-art ASR architectures, transducer and attention-encoder-decoder based, and multiple test sets.

When deploying modern machine learning-enabled robotic systems in high-stakes applications, detecting distribution shift is critical. However, most existing methods for detecting distribution shift are not well-suited to robotics settings, where data often arrives in a streaming fashion and may be very high-dimensional. In this work, we present an online method for detecting distribution shift with guarantees on the false positive rate - i.e., when there is no distribution shift, our system is very unlikely (with probability $< \epsilon$) to falsely issue an alert; any alerts that are issued should therefore be heeded. Our method is specifically designed for efficient detection even with high dimensional data, and it empirically achieves up to 11x faster detection on realistic robotics settings compared to prior work while maintaining a low false negative rate in practice (whenever there is a distribution shift in our experiments, our method indeed emits an alert). We demonstrate our approach in both simulation and hardware for a visual servoing task, and show that our method indeed issues an alert before a failure occurs.

Although the open source model bears many advantages in software development, open source projects are always hard to sustain. Previous research on open source sustainability mainly focuses on projects that have already reached a certain level of maturity (e.g., with communities, releases, and downstream projects). However, limited attention is paid to the development of (sustainable) open source projects in their infancy, and we believe an understanding of early sustainability determinants is crucial for project initiators, incubators, newcomers, and users. In this paper, we aim to explore the relationship between early participation factors and long-term project sustainability. We leverage a novel methodology combining the Blumberg model of performance and machine learning to predict the sustainability of 290,255 GitHub projects. Specificially, we train an XGBoost model based on early participation (first three months of activity) in 290,255 GitHub projects and we interpret the model using LIME. We quantitatively show that early participants have a positive effect on project's future sustained activity if they have prior experience in OSS project incubation and demonstrate concentrated focus and steady commitment. Participation from non-code contributors and detailed contribution documentation also promote project's sustained activity. Compared with individual projects, building a community that consists of more experienced core developers and more active peripheral developers is important for organizational projects. This study provides unique insights into the incubation and recognition of sustainable open source projects, and our interpretable prediction approach can also offer guidance to open source project initiators and newcomers.

Large Language Models (LLMs) have exhibited remarkable reasoning capabilities and become the foundation of language technologies. Inspired by the great success of code data in training LLMs, we naturally wonder at which training stage introducing code data can really help LLMs reasoning. To this end, this paper systematically explores the impact of code data on LLMs at different stages. Concretely, we introduce the code data at the pre-training stage, instruction-tuning stage, and both of them, respectively. Then, the reasoning capability of LLMs is comprehensively and fairly evaluated via six reasoning tasks in five domains. We critically analyze the experimental results and provide conclusions with insights. First, pre-training LLMs with the mixture of code and text can significantly enhance LLMs' general reasoning capability almost without negative transfer on other tasks. Besides, at the instruction-tuning stage, code data endows LLMs the task-specific reasoning capability. Moreover, the dynamic mixing strategy of code and text data assists LLMs to learn reasoning capability step-by-step during training. These insights deepen the understanding of LLMs regarding reasoning ability for their application, such as scientific question answering, legal support, etc. The source code and model parameters are released at the link:~\url{//github.com/yingweima2022/CodeLLM}.

The swift advancement in the scales and capabilities of Large Language Models (LLMs) positions them as promising tools for a variety of downstream tasks. In addition to the pursuit of better performance and the avoidance of violent feedback on a certain prompt, to ensure the responsibility of the LLM, much attention is drawn to the robustness of LLMs. However, existing evaluation methods mostly rely on traditional question answering datasets with predefined supervised labels, which do not align with the superior generation capabilities of contemporary LLMs. To address this issue, we propose a novel rational evaluation approach that leverages pre-trained reward models as diagnostic tools to evaluate the longer conversation generated from more challenging open questions by LLMs, which we refer to as the Reward Model for Reasonable Robustness Evaluation (TREvaL). Longer conversations manifest the comprehensive grasp of language models in terms of their proficiency in understanding questions, a capability not entirely encompassed by individual words or letters, which may exhibit oversimplification and inherent biases. Our extensive empirical experiments demonstrate that TREvaL provides an innovative method for evaluating the robustness of an LLM. Furthermore, our results demonstrate that LLMs frequently exhibit vulnerability to word-level perturbations that are commonplace in daily language usage. Notably, we are surprised to discover that robustness tends to decrease as fine-tuning (SFT and RLHF) is conducted. The code of TREval is available in //github.com/Harry-mic/TREvaL.

Feature attribution methods are popular in interpretable machine learning. These methods compute the attribution of each input feature to represent its importance, but there is no consensus on the definition of "attribution", leading to many competing methods with little systematic evaluation, complicated in particular by the lack of ground truth attribution. To address this, we propose a dataset modification procedure to induce such ground truth. Using this procedure, we evaluate three common methods: saliency maps, rationales, and attentions. We identify several deficiencies and add new perspectives to the growing body of evidence questioning the correctness and reliability of these methods applied on datasets in the wild. We further discuss possible avenues for remedy and recommend new attribution methods to be tested against ground truth before deployment. The code is available at \url{//github.com/YilunZhou/feature-attribution-evaluation}.

Non-convex optimization is ubiquitous in modern machine learning. Researchers devise non-convex objective functions and optimize them using off-the-shelf optimizers such as stochastic gradient descent and its variants, which leverage the local geometry and update iteratively. Even though solving non-convex functions is NP-hard in the worst case, the optimization quality in practice is often not an issue -- optimizers are largely believed to find approximate global minima. Researchers hypothesize a unified explanation for this intriguing phenomenon: most of the local minima of the practically-used objectives are approximately global minima. We rigorously formalize it for concrete instances of machine learning problems.

Graph Neural Networks (GNNs) for representation learning of graphs broadly follow a neighborhood aggregation framework, where the representation vector of a node is computed by recursively aggregating and transforming feature vectors of its neighboring nodes. Many GNN variants have been proposed and have achieved state-of-the-art results on both node and graph classification tasks. However, despite GNNs revolutionizing graph representation learning, there is limited understanding of their representational properties and limitations. Here, we present a theoretical framework for analyzing the expressive power of GNNs in capturing different graph structures. Our results characterize the discriminative power of popular GNN variants, such as Graph Convolutional Networks and GraphSAGE, and show that they cannot learn to distinguish certain simple graph structures. We then develop a simple architecture that is provably the most expressive among the class of GNNs and is as powerful as the Weisfeiler-Lehman graph isomorphism test. We empirically validate our theoretical findings on a number of graph classification benchmarks, and demonstrate that our model achieves state-of-the-art performance.

We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.

北京阿比特科技有限公司