Record linkage is the task of combining records from multiple files which refer to overlapping sets of entities when there is no unique identifying field. In streaming record linkage, files arrive sequentially in time and estimates of links are updated after the arrival of each file. This problem arises in settings such as longitudinal surveys, electronic health records, and online events databases, among others. The challenge in streaming record linkage is to efficiently update parameter estimates as new data arrive. We approach the problem from a Bayesian perspective with estimates calculated from posterior samples of parameters and present methods for updating link estimates after the arrival of a new file that are faster than fitting a joint model with each new data file. In this paper, we generalize a two-file Bayesian Fellegi-Sunter model to the multi-file case and propose two methods to perform streaming updates. We examine the effect of prior distribution on the resulting linkage accuracy as well as the computational trade-offs between the methods when compared to a Gibbs sampler through simulated and real-world survey panel data. We achieve near-equivalent posterior inference at a small fraction of the compute time. Supplemental materials for this article are available online.
For some hypothesis classes and input distributions, active agnostic learning needs exponentially fewer samples than passive learning; for other classes and distributions, it offers little to no improvement. The most popular algorithms for agnostic active learning express their performance in terms of a parameter called the disagreement coefficient, but it is known that these algorithms are inefficient on some inputs. We take a different approach to agnostic active learning, getting an algorithm that is competitive with the optimal algorithm for any binary hypothesis class $H$ and distribution $D_X$ over $X$. In particular, if any algorithm can use $m^*$ queries to get $O(\eta)$ error, then our algorithm uses $O(m^* \log |H|)$ queries to get $O(\eta)$ error. Our algorithm lies in the vein of the splitting-based approach of Dasgupta [2004], which gets a similar result for the realizable ($\eta = 0$) setting. We also show that it is NP-hard to do better than our algorithm's $O(\log |H|)$ overhead in general.
Diffusion Probabilistic Models stand as a critical tool in generative modelling, enabling the generation of complex data distributions. This family of generative models yields record-breaking performance in tasks such as image synthesis, video generation, and molecule design. Despite their capabilities, their efficiency, especially in the reverse process, remains a challenge due to slow convergence rates and high computational costs. In this paper, we introduce an approach that leverages continuous dynamical systems to design a novel denoising network for diffusion models that is more parameter-efficient, exhibits faster convergence, and demonstrates increased noise robustness. Experimenting with Denoising Diffusion Probabilistic Models (DDPMs), our framework operates with approximately a quarter of the parameters, and $\sim$ 30\% of the Floating Point Operations (FLOPs) compared to standard U-Nets in DDPMs. Furthermore, our model is notably faster in inference than the baseline when measured in fair and equal conditions. We also provide a mathematical intuition as to why our proposed reverse process is faster as well as a mathematical discussion of the empirical tradeoffs in the denoising downstream task. Finally, we argue that our method is compatible with existing performance enhancement techniques, enabling further improvements in efficiency, quality, and speed.
Topic modeling is a widely used technique for revealing underlying thematic structures within textual data. However, existing models have certain limitations, particularly when dealing with short text datasets that lack co-occurring words. Moreover, these models often neglect sentence-level semantics, focusing primarily on token-level semantics. In this paper, we propose PromptTopic, a novel topic modeling approach that harnesses the advanced language understanding of large language models (LLMs) to address these challenges. It involves extracting topics at the sentence level from individual documents, then aggregating and condensing these topics into a predefined quantity, ultimately providing coherent topics for texts of varying lengths. This approach eliminates the need for manual parameter tuning and improves the quality of extracted topics. We benchmark PromptTopic against the state-of-the-art baselines on three vastly diverse datasets, establishing its proficiency in discovering meaningful topics. Furthermore, qualitative analysis showcases PromptTopic's ability to uncover relevant topics in multiple datasets.
Coalition formation is concerned with the question of how to partition a set of agents into disjoint coalitions according to their preferences. Deviating from most of the previous work, we consider an online variant of the problem, where agents arrive in sequence and whenever an agent arrives, they have to be assigned to a coalition immediately and irrevocably. The scarce existing literature on online coalition formation has focused on the objective of maximizing social welfare, a demanding requirement, even in the offline setting. Instead, we seek to achieve stable coalition structures in an online setting, and focus on stability concepts based on deviations by single agents. We present a comprehensive picture in additively separable hedonic games, leading to dichotomies, where positive results are obtained by deterministic algorithms and negative results even hold for randomized algorithms.
Training foundation models on extensive datasets and then finetuning them on specific tasks has emerged as the mainstream approach in artificial intelligence. However, the model robustness, which is a critical aspect for safety, is often optimized for each specific task rather than at the pretraining stage. In this paper, we propose a method for pretraining certifiably robust models that can be readily finetuned for adaptation to a particular task. A key challenge is dealing with the compromise between semantic learning and robustness. We address this with a simple yet highly effective strategy based on significantly broadening the pretraining data distribution, which is shown to greatly benefit finetuning for downstream tasks. Through pretraining on a mixture of clean and various noisy images, we find that surprisingly strong certified accuracy can be achieved even when finetuning on only clean images. Furthermore, this strategy requires just a single model to deal with various noise levels, thus substantially reducing computational costs in relation to previous works that employ multiple models. Despite using just one model, our method can still yield results that are on par with, or even superior to, existing multi-model methods.
Dataset distillation is the technique of synthesizing smaller condensed datasets from large original datasets while retaining necessary information to persist the effect. In this paper, we approach the dataset distillation problem from a novel perspective: we regard minimizing the prediction discrepancy on the real data distribution between models, which are respectively trained on the large original dataset and on the small distilled dataset, as a conduit for condensing information from the raw data into the distilled version. An adversarial framework is proposed to solve the problem efficiently. In contrast to existing distillation methods involving nested optimization or long-range gradient unrolling, our approach hinges on single-level optimization. This ensures the memory efficiency of our method and provides a flexible tradeoff between time and memory budgets, allowing us to distil ImageNet-1K using a minimum of only 6.5GB of GPU memory. Under the optimal tradeoff strategy, it requires only 2.5$\times$ less memory and 5$\times$ less runtime compared to the state-of-the-art. Empirically, our method can produce synthetic datasets just 10% the size of the original, yet achieve, on average, 94% of the test accuracy of models trained on the full original datasets including ImageNet-1K, significantly surpassing state-of-the-art. Additionally, extensive tests reveal that our distilled datasets excel in cross-architecture generalization capabilities.
Vines and vineyard connecting a stack of persistence diagrams have been introduced in the non-zigzag setting by Cohen-Steiner et al. We consider computing these vines over changing filtrations for zigzag persistence while incorporating two more operations: expansions and contractions in addition to the transpositions considered in the non-zigzag setting. Although expansions and contractions can be implemented in quadratic time in the non-zigzag case by utilizing the linear-time transpositions, it is not obvious how they can be carried out under the zigzag framework with the same complexity. While transpositions alone can be easily conducted in linear time using the recent FastZigzag algorithm, expansions and contractions pose difficulty in breaking the barrier of cubic complexity. Our main result is that, the half-way constructed up-down filtration in the FastZigzag algorithm indeed can be used to achieve linear time complexity for transpositions and quadratic time complexity for expansions and contractions, matching the time complexity of all corresponding operations in the non-zigzag case.
Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.
The chronological order of user-item interactions can reveal time-evolving and sequential user behaviors in many recommender systems. The items that users will interact with may depend on the items accessed in the past. However, the substantial increase of users and items makes sequential recommender systems still face non-trivial challenges: (1) the hardness of modeling the short-term user interests; (2) the difficulty of capturing the long-term user interests; (3) the effective modeling of item co-occurrence patterns. To tackle these challenges, we propose a memory augmented graph neural network (MA-GNN) to capture both the long- and short-term user interests. Specifically, we apply a graph neural network to model the item contextual information within a short-term period and utilize a shared memory network to capture the long-range dependencies between items. In addition to the modeling of user interests, we employ a bilinear function to capture the co-occurrence patterns of related items. We extensively evaluate our model on five real-world datasets, comparing with several state-of-the-art methods and using a variety of performance metrics. The experimental results demonstrate the effectiveness of our model for the task of Top-K sequential recommendation.
We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.