亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider resultant-based methods for elimination of indeterminates of Ore polynomial systems in Ore algebra. We start with defining the concept of resultant for bivariate Ore polynomials then compute it by the Dieudonne determinant of the polynomial coefficients. Additionally, we apply noncommutative versions of evaluation and interpolation techniques to the computation process to improve the efficiency of the method. The implementation of the algorithms will be performed in Maple to evaluate the performance of the approaches.

相關內容

The paper presents a new reduction method designed for dynamic contact problems. Recently, we have proposed an efficient reduction scheme for the node-to-node formulation, that leads to Linear Complementarity Problems (LCP). Here, we enhance the underlying contact problem to a node-to-segment formulation. Due to the application of the dual approach, a Nonlinear Complementarity Problem (NCP) is obtained, where the node-to-segment condition is described by a quadratic inequality and is approximated by a sequence of LCPs in each time step. These steps are performed in a reduced approximation space, while the contact treatment itself can be achieved by the Craig-Bampton method, which preserves the Lagrange multipliers and the nodal displacements at the contact zone. We think, that if the contact area is small compared to the overall structure, the reduction scheme performs very efficiently, since the contact shape is entirely recovered. The performance of the resulting reduction method is assessed on two 2D computational examples

We introduce a new model for contagion spread using a network of interacting finite memory two-color P\'{o}lya urns, which we refer to as the finite memory interacting P\'{o}lya contagion network. The urns interact in the sense that the probability of drawing a red ball (which represents an infection state) for a given urn, not only depends on the ratio of red balls in that urn but also on the ratio of red balls in the other urns in the network, hence accounting for the effect of spatial contagion. The resulting network-wide contagion process is a discrete-time finite-memory ($M$th order) Markov process, whose transition probability matrix is determined. The stochastic properties of the network contagion Markov process are analytically examined, and for homogeneous system parameters, we characterize the limiting state of infection in each urn. For the non-homogeneous case, given the complexity of the stochastic process, and in the same spirit as the well-studied SIS models, we use a mean-field type approximation to obtain a discrete-time dynamical system for the finite memory interacting P\'{o}lya contagion network. Interestingly, for $M=1$, we obtain a linear dynamical system which exactly represents the corresponding Markov process. For $M>1$, we use mean-field approximation to obtain a nonlinear dynamical system. Furthermore, noting that the latter dynamical system admits a linear variant (realized by retaining its leading linear terms), we study the asymptotic behavior of the linear systems for both memory modes and characterize their equilibrium. Finally, we present simulation studies to assess the quality of the approximation purveyed by the linear and non-linear dynamical systems.

We focus on the numerical modelling of water waves by means of depth averaged models. We consider in particular PDE systems which consist in a nonlinear hyperbolic model plus a linear dispersive perturbation involving an elliptic operator. We propose two strategies to construct reduced order models for these problems, with the main focus being the control of the overhead related to the inversion of the elliptic operators, as well as the robustness with respect to variations of the flow parameters. In a first approach, only a linear reduction strategies is applied only to the elliptic component, while the computations of the nonlinear fluxes are still performed explicitly. This hybrid approach, referred to as pdROM, is compared to a hyper-reduction strategy based on the empirical interpolation method to reduce also the nonlinear fluxes. We evaluate the two approaches on a variety of benchmarks involving a generalized variant of the BBM-KdV model with a variable bottom, and a one-dimensional enhanced weakly dispersive shallow water system. The results show the potential of both approaches in terms of cost reduction, with a clear advantage for the pdROM in terms of robustness, and for the EIMROM in terms of cost reduction.

Event cameras capture changes of illumination in the observed scene rather than accumulating light to create images. Thus, they allow for applications under high-speed motion and complex lighting conditions, where traditional framebased sensors show their limits with blur and over- or underexposed pixels. Thanks to these unique properties, they represent nowadays an highly attractive sensor for ITS-related applications. Event-based optical flow (EBOF) has been studied following the rise in popularity of these neuromorphic cameras. The recent arrival of high-definition neuromorphic sensors, however, challenges the existing approaches, because of the increased resolution of the events pixel array and a much higher throughput. As an answer to these points, we propose an optimized framework for computing optical flow in real-time with both low- and high-resolution event cameras. We formulate a novel dense representation for the sparse events flow, in the form of the "inverse exponential distance surface". It serves as an interim frame, designed for the use of proven, state-of-the-art frame-based optical flow computation methods. We evaluate our approach on both low- and high-resolution driving sequences, and show that it often achieves better results than the current state of the art, while also reaching higher frame rates, 250Hz at 346 x 260 pixels and 77Hz at 1280 x 720 pixels.

Modern high-dimensional methods often adopt the ``bet on sparsity'' principle, while in supervised multivariate learning statisticians may face ``dense'' problems with a large number of nonzero coefficients. This paper proposes a novel clustered reduced-rank learning (CRL) framework that imposes two joint matrix regularizations to automatically group the features in constructing predictive factors. CRL is more interpretable than low-rank modeling and relaxes the stringent sparsity assumption in variable selection. In this paper, new information-theoretical limits are presented to reveal the intrinsic cost of seeking for clusters, as well as the blessing from dimensionality in multivariate learning. Moreover, an efficient optimization algorithm is developed, which performs subspace learning and clustering with guaranteed convergence. The obtained fixed-point estimators, though not necessarily globally optimal, enjoy the desired statistical accuracy beyond the standard likelihood setup under some regularity conditions. Moreover, a new kind of information criterion, as well as its scale-free form, is proposed for cluster and rank selection, and has a rigorous theoretical support without assuming an infinite sample size. Extensive simulations and real-data experiments demonstrate the statistical accuracy and interpretability of the proposed method.

In this article we study fully-connected feedforward deep ReLU ANNs with an arbitrarily large number of hidden layers and we prove convergence of the risk of the GD optimization method with random initializations in the training of such ANNs under the assumption that the unnormalized probability density function of the probability distribution of the input data of the considered supervised learning problem is piecewise polynomial, under the assumption that the target function (describing the relationship between input data and the output data) is piecewise polynomial, and under the assumption that the risk function of the considered supervised learning problem admits at least one regular global minimum. In addition, in the special situation of shallow ANNs with just one hidden layer and one-dimensional input we also verify this assumption by proving in the training of such shallow ANNs that for every Lipschitz continuous target function there exists a global minimum in the risk landscape. Finally, in the training of deep ANNs with ReLU activation we also study solutions of gradient flow (GF) differential equations and we prove that every non-divergent GF trajectory converges with a polynomial rate of convergence to a critical point (in the sense of limiting Fr\'echet subdifferentiability). Our mathematical convergence analysis builds up on tools from real algebraic geometry such as the concept of semi-algebraic functions and generalized Kurdyka-Lojasiewicz inequalities, on tools from functional analysis such as the Arzel\`a-Ascoli theorem, on tools from nonsmooth analysis such as the concept of limiting Fr\'echet subgradients, as well as on the fact that the set of realization functions of shallow ReLU ANNs with fixed architecture forms a closed subset of the set of continuous functions revealed by Petersen et al.

We apply the cell merging method to a model shallow water problem with a permeable boundary. We use a cut cell approach which is more easily and systematically scalable with different shapes of boundaries. The novel cell merging method presented in this paper uses both wave propagation algorithm and gradient reconstruction for second order corrections, along with minmod and Barth-Jespersen limiters. We observe second order convergence in two model problems, one with a linear boundary and other with a composite, V-shaped boundary. We assess the effectiveness of these two boundaries by doing a realistic scenario including an island and observing inundation at the peak of the island.

We examine some combinatorial properties of parallel cut elimination in multiplicative linear logic (MLL) proof nets. We show that, provided we impose a constraint on some paths, we can bound the size of all the nets satisfying this constraint and reducing to a fixed resultant net. This result gives a sufficient condition for an infinite weighted sum of nets to reduce into another sum of nets, while keeping coefficients finite. We moreover show that our constraints are stable under reduction. Our approach is motivated by the quantitative semantics of linear logic: many models have been proposed, whose structure reflect the Taylor expansion of multiplicative exponential linear logic (MELL) proof nets into infinite sums of differential nets. In order to simulate one cut elimination step in MELL, it is necessary to reduce an arbitrary number of cuts in the differential nets of its Taylor expansion. It turns out our results apply to differential nets, because their cut elimination is essentially multiplicative. We moreover show that the set of differential nets that occur in the Taylor expansion of an MELL net automatically satisfies our constraints. Interestingly, our nets are untyped: we only rely on the sequentiality of linear logic nets and the dynamics of cut elimination. The paths on which we impose bounds are the switching paths involved in the Danos--Regnier criterion for sequentiality. In order to accommodate multiplicative units and weakenings, our nets come equipped with jumps: each weakening node is connected to some other node. Our constraint can then be summed up as a bound on both the length of switching paths, and the number of weakenings that jump to a common node.

Simultaneously transmitting/refracting and reflecting reconfigurable intelligent surface (STAR-RIS) has been introduced to achieve full coverage area. This paper investigate the performance of STAR-RIS assisted non-orthogonal multiple access (NOMA) networks over Rician fading channels, where the incidence signals sent by base station are reflected and transmitted to the nearby user and distant user, respectively. To evaluate the performance of STAR-RIS-NOMA networks, we derive new exact and asymptotic expressions of outage probability and ergodic rate for a pair of users, in which the imperfect successive interference cancellation (ipSIC) and perfect SIC (pSIC) schemes are taken into consideration. Based on the approximated results, the diversity orders of $zero$ and $ {\frac{{\mu _n^2K}}{{2{\Omega _n}}} + 1} $ are achieved for the nearby user with ipSIC/pSIC, while the diversity order of distant user is equal to ${\frac{{\mu _m^2 K}}{{2{\Omega _m}}}}$. The high signal-to-noise radio (SNR) slopes of ergodic rates for nearby user with pSIC and distant user are equal to $one$ and $zero$, respectively. In addition, the system throughput of STAR-RIS-NOMA is discussed in delay-limited and delay-tolerant modes. Simulation results are provided to verify the accuracy of the theoretical analyses and demonstrate that: 1) The outage probability of STAR-RIS-NOMA outperforms that of STAR-RIS assisted orthogonal multiple access (OMA) and conventional cooperative communication systems; 2) With the increasing of configurable elements $K$ and Rician factor $\kappa $, the STAR-RIS-NOMA networks are capable of attaining the enhanced performance; and 3) The ergodic rates of STAR-RIS-NOMA are superior to that of STAR-RIS-OMA.

The availability of large microarray data has led to a growing interest in biclustering methods in the past decade. Several algorithms have been proposed to identify subsets of genes and conditions according to different similarity measures and under varying constraints. In this paper we focus on the exclusive row biclustering problem for gene expression data sets, in which each row can only be a member of a single bicluster while columns can participate in multiple ones. This type of biclustering may be adequate, for example, for clustering groups of cancer patients where each patient (row) is expected to be carrying only a single type of cancer, while each cancer type is associated with multiple (and possibly overlapping) genes (columns). We present a novel method to identify these exclusive row biclusters through a combination of existing biclustering algorithms and combinatorial auction techniques. We devise an approach for tuning the threshold for our algorithm based on comparison to a null model in the spirit of the Gap statistic approach. We demonstrate our approach on both synthetic and real-world gene expression data and show its power in identifying large span non-overlapping rows sub matrices, while considering their unique nature. The Gap statistic approach succeeds in identifying appropriate thresholds in all our examples.

北京阿比特科技有限公司