Time-Sensitive Networking (TSN) extends Ethernet to enable real-time communication, including the Credit-Based Shaper (CBS) for prioritized scheduling and the Time-Aware Shaper (TAS) for scheduled traffic. Generally, TSN requires streams to be explicitly admitted before being transmitted. To ensure that admitted traffic conforms with the traffic descriptors indicated for admission control, Per-Stream Filtering and Policing (PSFP) has been defined. For credit-based metering, well-known token bucket policers are applied. However, time-based metering requires time-dependent switch behavior and time synchronization with sub-microsecond precision. While TSN-capable switches support various TSN traffic shaping mechanisms, a full implementation of PSFP is still not available. To bridge this gap, we present a P4-based implementation of PSFP on a 100 Gb/s per port hardware switch. We explain the most interesting aspects of the PSFP implementation whose code is available on GitHub. We demonstrate credit-based and time-based policing and synchronization capabilities to validate the functionality and effectiveness of P4-PSFP. The implementation scales up to 35840 streams depending on the stream identification method. P4-PSFP can be used in practice as long as appropriate TSN switches lack this function. Moreover, its implementation may be helpful for other P4-based hardware implementations that require time synchronization.
Recent advances in contrastive language-image pretraining (CLIP) have demonstrated strong capabilities in zero-shot classification by aligning visual representations with target text embeddings in an image level. However, in dense prediction tasks, CLIP often struggles to localize visual features within an image and fails to give accurate pixel-level predictions, which prevents it from functioning as a generalized visual foundation model. In this work, we aim to enhance CLIP's potential for semantic segmentation with minimal modifications to its pretrained models. By rethinking self-attention, we surprisingly find that CLIP can adapt to dense prediction tasks by simply introducing a novel Correlative Self-Attention (CSA) mechanism. Specifically, we replace the traditional self-attention block of CLIP vision encoder's last layer by our CSA module and reuse its pretrained projection matrices of query, key, and value, leading to a training-free adaptation approach for CLIP's zero-shot semantic segmentation. Extensive experiments show the advantage of CSA: we obtain a 38.2% average zero-shot mIoU across eight semantic segmentation benchmarks highlighted in this paper, significantly outperforming the existing SoTA's 33.9% and the vanilla CLIP's 14.1%.
Time series forecasting task predicts future trends based on historical information. Recent U-Net-based methods have demonstrated superior performance in predicting real-world datasets. However, the performance of these models is lower than patch-based models or linear models. In this work, we propose a symmetric and hierarchical framework, Kernel-U-Net, which cuts the input sequence into slices at each layer of the network and then computes them using kernels. Furthermore, it generalizes the concept of convolutional kernels in classic U-Net to accept custom kernels that follow the same design pattern. Compared to the existing linear or transformer-based solution, our model contains 3 advantages: 1) A small number of parameters: the parameters size is $O(log(L)^2)$ where $L$ is the look-back window size, 2) Flexibility: its kernels can be customized and fitted to the datasets, 3) Computation efficiency: the computation complexity of transformer modules is reduced to $O(log(L)^2)$ if they are placed close to the latent vector. Kernel-U-Net accuracy was greater than or equal to the state-of-the-art model on six (out of seven) real-world datasets.
Large Language Models (LLMs) have revolutionized Natural Language Processing but exhibit limitations, particularly in autonomously addressing novel challenges such as reasoning and problem-solving. Traditional techniques like chain-of-thought prompting necessitate explicit human guidance. This paper introduces a novel multi-agent communication framework, inspired by the CAMEL model, to enhance LLMs' autonomous problem-solving capabilities. The framework employs multiple LLM agents, each with a distinct persona, engaged in role-playing communication, offering a nuanced and adaptable approach to diverse problem scenarios. Extensive experimentation demonstrates the framework's superior performance and adaptability, providing valuable insights into the collaborative potential of multiple agents in overcoming the limitations of individual models.
Recently, intelligent reflecting surface (IRS)-aided millimeter-wave (mmWave) and terahertz (THz) communications are considered in the wireless community. This paper aims to design a beam-based multiple-access strategy for this new paradigm. Its key idea is to make use of multiple sub-arrays over a hybrid digital-analog array to form independent beams, each of which is steered towards the desired direction to mitigate inter-user interference and suppress unwanted signal reflection. The proposed scheme combines the advantages of both orthogonal multiple access (i.e., no inter-user interference) and non-orthogonal multiple access (i.e., full time-frequency resource use). Consequently, it can substantially boost the system capacity, as verified by Monte-Carlo simulations.
With the rapid evolution of the Text-to-Image (T2I) model in recent years, their unsatisfactory generation result has become a challenge. However, uniformly refining AI-Generated Images (AIGIs) of different qualities not only limited optimization capabilities for low-quality AIGIs but also brought negative optimization to high-quality AIGIs. To address this issue, a quality-award refiner named Q-Refine is proposed. Based on the preference of the Human Visual System (HVS), Q-Refine uses the Image Quality Assessment (IQA) metric to guide the refining process for the first time, and modify images of different qualities through three adaptive pipelines. Experimental shows that for mainstream T2I models, Q-Refine can perform effective optimization to AIGIs of different qualities. It can be a general refiner to optimize AIGIs from both fidelity and aesthetic quality levels, thus expanding the application of the T2I generation models.
The emergence of LLM (Large Language Model) integrated virtual assistants has brought about a rapid transformation in communication dynamics. During virtual assistant development, some developers prefer to leverage the system message, also known as an initial prompt or custom prompt, for preconditioning purposes. However, it is important to recognize that an excessive reliance on this functionality raises the risk of manipulation by malicious actors who can exploit it with carefully crafted prompts. Such malicious manipulation poses a significant threat, potentially compromising the accuracy and reliability of the virtual assistant's responses. Consequently, safeguarding the virtual assistants with detection and defense mechanisms becomes of paramount importance to ensure their safety and integrity. In this study, we explored three detection and defense mechanisms aimed at countering attacks that target the system message. These mechanisms include inserting a reference key, utilizing an LLM evaluator, and implementing a Self-Reminder. To showcase the efficacy of these mechanisms, they were tested against prominent attack techniques. Our findings demonstrate that the investigated mechanisms are capable of accurately identifying and counteracting the attacks. The effectiveness of these mechanisms underscores their potential in safeguarding the integrity and reliability of virtual assistants, reinforcing the importance of their implementation in real-world scenarios. By prioritizing the security of virtual assistants, organizations can maintain user trust, preserve the integrity of the application, and uphold the high standards expected in this era of transformative technologies.
Person Re-Identification (Re-ID) task seeks to enhance the tracking of multiple individuals by surveillance cameras. It provides additional support for multimodal tasks, including text-based person retrieval and human matching. Among the significant challenges faced in Re-ID, one of the most prominent is dealing with clothes-changing, where the same person may appear in different outfits. While previous methods have made notable progress in maintaining clothing data consistency and handling clothing change data, they still tend to rely excessively on clothing information, which can limit performance due to the dynamic nature of human appearances. To mitigate this challenge, we propose the Pose-Guided Supervision (PGS), an effective framework for learning pose guidance within the Re-ID task. Our PGS consists of three modules: a human encoder, a pose encoder, and a Pose-to-Human Projection module (PHP). The pose encoder module utilizes a frozen pre-trained model while we fine-tune a pre-trained human-centric model for the human encoder module. Our PHP transfers pose knowledge from the pose encoder module to the human encoder module through multiple projectors. Our framework, following extensive experimentation on five benchmark datasets, consistently surpasses the performance of current state-of-the-art methods. Our code is available at //github.com/huyquoctrinh/PGS.
Multi-modal multi-label emotion recognition (MMER) aims to identify relevant emotions from multiple modalities. The challenge of MMER is how to effectively capture discriminative features for multiple labels from heterogeneous data. Recent studies are mainly devoted to exploring various fusion strategies to integrate multi-modal information into a unified representation for all labels. However, such a learning scheme not only overlooks the specificity of each modality but also fails to capture individual discriminative features for different labels. Moreover, dependencies of labels and modalities cannot be effectively modeled. To address these issues, this paper presents ContrAstive feature Reconstruction and AggregaTion (CARAT) for the MMER task. Specifically, we devise a reconstruction-based fusion mechanism to better model fine-grained modality-to-label dependencies by contrastively learning modal-separated and label-specific features. To further exploit the modality complementarity, we introduce a shuffle-based aggregation strategy to enrich co-occurrence collaboration among labels. Experiments on two benchmark datasets CMU-MOSEI and M3ED demonstrate the effectiveness of CARAT over state-of-the-art methods. Code is available at //github.com/chengzju/CARAT.
Graph Neural Networks (GNNs) are information processing architectures for signals supported on graphs. They are presented here as generalizations of convolutional neural networks (CNNs) in which individual layers contain banks of graph convolutional filters instead of banks of classical convolutional filters. Otherwise, GNNs operate as CNNs. Filters are composed with pointwise nonlinearities and stacked in layers. It is shown that GNN architectures exhibit equivariance to permutation and stability to graph deformations. These properties provide a measure of explanation respecting the good performance of GNNs that can be observed empirically. It is also shown that if graphs converge to a limit object, a graphon, GNNs converge to a corresponding limit object, a graphon neural network. This convergence justifies the transferability of GNNs across networks with different number of nodes.
We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.