亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Nighttime image dehazing is a challenging task due to the presence of multiple types of adverse degrading effects including glow, haze, blurry, noise, color distortion, and so on. However, most previous studies mainly focus on daytime image dehazing or partial degradations presented in nighttime hazy scenes, which may lead to unsatisfactory restoration results. In this paper, we propose an end-to-end transformer-based framework for nighttime haze removal, called NightHazeFormer. Our proposed approach consists of two stages: supervised pre-training and semi-supervised fine-tuning. During the pre-training stage, we introduce two powerful priors into the transformer decoder to generate the non-learnable prior queries, which guide the model to extract specific degradations. For the fine-tuning, we combine the generated pseudo ground truths with input real-world nighttime hazy images as paired images and feed into the synthetic domain to fine-tune the pre-trained model. This semi-supervised fine-tuning paradigm helps improve the generalization to real domain. In addition, we also propose a large-scale synthetic dataset called UNREAL-NH, to simulate the real-world nighttime haze scenarios comprehensively. Extensive experiments on several synthetic and real-world datasets demonstrate the superiority of our NightHazeFormer over state-of-the-art nighttime haze removal methods in terms of both visually and quantitatively.

相關內容

Self-supervised learning (SSL) has been widely applied to learn image representations through exploiting unlabeled images. However, it has not been fully explored in the medical image analysis field. In this work, we propose Saliency-guided Self-Supervised image Transformer (SSiT) for diabetic retinopathy (DR) grading from fundus images. We novelly introduce saliency maps into SSL, with a goal of guiding self-supervised pre-training with domain-specific prior knowledge. Specifically, two saliency-guided learning tasks are employed in SSiT: (1) We conduct saliency-guided contrastive learning based on the momentum contrast, wherein we utilize fundus images' saliency maps to remove trivial patches from the input sequences of the momentum-updated key encoder. And thus, the key encoder is constrained to provide target representations focusing on salient regions, guiding the query encoder to capture salient features. (2) We train the query encoder to predict the saliency segmentation, encouraging preservation of fine-grained information in the learned representations. Extensive experiments are conducted on four publicly-accessible fundus image datasets. The proposed SSiT significantly outperforms other representative state-of-the-art SSL methods on all datasets and under various evaluation settings, establishing the effectiveness of the learned representations from SSiT. The source code is available at //github.com/YijinHuang/SSiT.

We present Magic123, a two-stage coarse-to-fine approach for high-quality, textured 3D meshes generation from a single unposed image in the wild using both2D and 3D priors. In the first stage, we optimize a neural radiance field to produce a coarse geometry. In the second stage, we adopt a memory-efficient differentiable mesh representation to yield a high-resolution mesh with a visually appealing texture. In both stages, the 3D content is learned through reference view supervision and novel views guided by a combination of 2D and 3D diffusion priors. We introduce a single trade-off parameter between the 2D and 3D priors to control exploration (more imaginative) and exploitation (more precise) of the generated geometry. Additionally, we employ textual inversion and monocular depth regularization to encourage consistent appearances across views and to prevent degenerate solutions, respectively. Magic123 demonstrates a significant improvement over previous image-to-3D techniques, as validated through extensive experiments on synthetic benchmarks and diverse real-world images. Our code, models, and generated 3D assets are available at //github.com/guochengqian/Magic123.

Large-scale visual-language pre-trained models (VLPM) have proven their excellent performance in downstream object detection for natural scenes. However, zero-shot nuclei detection on H\&E images via VLPMs remains underexplored. The large gap between medical images and the web-originated text-image pairs used for pre-training makes it a challenging task. In this paper, we attempt to explore the potential of the object-level VLPM, Grounded Language-Image Pre-training (GLIP) model, for zero-shot nuclei detection. Concretely, an automatic prompts design pipeline is devised based on the association binding trait of VLPM and the image-to-text VLPM BLIP, avoiding empirical manual prompts engineering. We further establish a self-training framework, using the automatically designed prompts to generate the preliminary results as pseudo labels from GLIP and refine the predicted boxes in an iterative manner. Our method achieves a remarkable performance for label-free nuclei detection, surpassing other comparison methods. Foremost, our work demonstrates that the VLPM pre-trained on natural image-text pairs exhibits astonishing potential for downstream tasks in the medical field as well. Code will be released at //github.com/wuyongjianCODE/VLPMNuD.

Single image 3D reconstruction is an important but challenging task that requires extensive knowledge of our natural world. Many existing methods solve this problem by optimizing a neural radiance field under the guidance of 2D diffusion models but suffer from lengthy optimization time, 3D inconsistency results, and poor geometry. In this work, we propose a novel method that takes a single image of any object as input and generates a full 360-degree 3D textured mesh in a single feed-forward pass. Given a single image, we first use a view-conditioned 2D diffusion model, Zero123, to generate multi-view images for the input view, and then aim to lift them up to 3D space. Since traditional reconstruction methods struggle with inconsistent multi-view predictions, we build our 3D reconstruction module upon an SDF-based generalizable neural surface reconstruction method and propose several critical training strategies to enable the reconstruction of 360-degree meshes. Without costly optimizations, our method reconstructs 3D shapes in significantly less time than existing methods. Moreover, our method favors better geometry, generates more 3D consistent results, and adheres more closely to the input image. We evaluate our approach on both synthetic data and in-the-wild images and demonstrate its superiority in terms of both mesh quality and runtime. In addition, our approach can seamlessly support the text-to-3D task by integrating with off-the-shelf text-to-image diffusion models.

We introduce NaturalInversion, a novel model inversion-based method to synthesize images that agrees well with the original data distribution without using real data. In NaturalInversion, we propose: (1) a Feature Transfer Pyramid which uses enhanced image prior of the original data by combining the multi-scale feature maps extracted from the pre-trained classifier, (2) a one-to-one approach generative model where only one batch of images are synthesized by one generator to bring the non-linearity to optimization and to ease the overall optimizing process, (3) learnable Adaptive Channel Scaling parameters which are end-to-end trained to scale the output image channel to utilize the original image prior further. With our NaturalInversion, we synthesize images from classifiers trained on CIFAR-10/100 and show that our images are more consistent with original data distribution than prior works by visualization and additional analysis. Furthermore, our synthesized images outperform prior works on various applications such as knowledge distillation and pruning, demonstrating the effectiveness of our proposed method.

Segmentation is an essential step for remote sensing image processing. This study aims to advance the application of the Segment Anything Model (SAM), an innovative image segmentation model by Meta AI, in the field of remote sensing image analysis. SAM is known for its exceptional generalization capabilities and zero-shot learning, making it a promising approach to processing aerial and orbital images from diverse geographical contexts. Our exploration involved testing SAM across multi-scale datasets using various input prompts, such as bounding boxes, individual points, and text descriptors. To enhance the model's performance, we implemented a novel automated technique that combines a text-prompt-derived general example with one-shot training. This adjustment resulted in an improvement in accuracy, underscoring SAM's potential for deployment in remote sensing imagery and reducing the need for manual annotation. Despite the limitations encountered with lower spatial resolution images, SAM exhibits promising adaptability to remote sensing data analysis. We recommend future research to enhance the model's proficiency through integration with supplementary fine-tuning techniques and other networks. Furthermore, we provide the open-source code of our modifications on online repositories, encouraging further and broader adaptations of SAM to the remote sensing domain.

Estimating human pose and shape from monocular images is a long-standing problem in computer vision. Since the release of statistical body models, 3D human mesh recovery has been drawing broader attention. With the same goal of obtaining well-aligned and physically plausible mesh results, two paradigms have been developed to overcome challenges in the 2D-to-3D lifting process: i) an optimization-based paradigm, where different data terms and regularization terms are exploited as optimization objectives; and ii) a regression-based paradigm, where deep learning techniques are embraced to solve the problem in an end-to-end fashion. Meanwhile, continuous efforts are devoted to improving the quality of 3D mesh labels for a wide range of datasets. Though remarkable progress has been achieved in the past decade, the task is still challenging due to flexible body motions, diverse appearances, complex environments, and insufficient in-the-wild annotations. To the best of our knowledge, this is the first survey to focus on the task of monocular 3D human mesh recovery. We start with the introduction of body models and then elaborate recovery frameworks and training objectives by providing in-depth analyses of their strengths and weaknesses. We also summarize datasets, evaluation metrics, and benchmark results. Open issues and future directions are discussed in the end, hoping to motivate researchers and facilitate their research in this area. A regularly updated project page can be found at //github.com/tinatiansjz/hmr-survey.

The key challenge of image manipulation detection is how to learn generalizable features that are sensitive to manipulations in novel data, whilst specific to prevent false alarms on authentic images. Current research emphasizes the sensitivity, with the specificity overlooked. In this paper we address both aspects by multi-view feature learning and multi-scale supervision. By exploiting noise distribution and boundary artifact surrounding tampered regions, the former aims to learn semantic-agnostic and thus more generalizable features. The latter allows us to learn from authentic images which are nontrivial to be taken into account by current semantic segmentation network based methods. Our thoughts are realized by a new network which we term MVSS-Net. Extensive experiments on five benchmark sets justify the viability of MVSS-Net for both pixel-level and image-level manipulation detection.

Breast cancer remains a global challenge, causing over 1 million deaths globally in 2018. To achieve earlier breast cancer detection, screening x-ray mammography is recommended by health organizations worldwide and has been estimated to decrease breast cancer mortality by 20-40%. Nevertheless, significant false positive and false negative rates, as well as high interpretation costs, leave opportunities for improving quality and access. To address these limitations, there has been much recent interest in applying deep learning to mammography; however, obtaining large amounts of annotated data poses a challenge for training deep learning models for this purpose, as does ensuring generalization beyond the populations represented in the training dataset. Here, we present an annotation-efficient deep learning approach that 1) achieves state-of-the-art performance in mammogram classification, 2) successfully extends to digital breast tomosynthesis (DBT; "3D mammography"), 3) detects cancers in clinically-negative prior mammograms of cancer patients, 4) generalizes well to a population with low screening rates, and 5) outperforms five-out-of-five full-time breast imaging specialists by improving absolute sensitivity by an average of 14%. Our results demonstrate promise towards software that can improve the accuracy of and access to screening mammography worldwide.

Degradation of image quality due to the presence of haze is a very common phenomenon. Existing DehazeNet [3], MSCNN [11] tackled the drawbacks of hand crafted haze relevant features. However, these methods have the problem of color distortion in gloomy (poor illumination) environment. In this paper, a cardinal (red, green and blue) color fusion network for single image haze removal is proposed. In first stage, network fusses color information present in hazy images and generates multi-channel depth maps. The second stage estimates the scene transmission map from generated dark channels using multi channel multi scale convolutional neural network (McMs-CNN) to recover the original scene. To train the proposed network, we have used two standard datasets namely: ImageNet [5] and D-HAZY [1]. Performance evaluation of the proposed approach has been carried out using structural similarity index (SSIM), mean square error (MSE) and peak signal to noise ratio (PSNR). Performance analysis shows that the proposed approach outperforms the existing state-of-the-art methods for single image dehazing.

北京阿比特科技有限公司