亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The commercialization of diffusion models, renowned for their ability to generate high-quality images that are often indistinguishable from real ones, brings forth potential copyright concerns. Although attempts have been made to impede unauthorized access to copyrighted material during training and to subsequently prevent DMs from generating copyrighted images, the effectiveness of these solutions remains unverified. This study explores the vulnerabilities associated with copyright protection in DMs by introducing a backdoor data poisoning attack (SilentBadDiffusion) against text-to-image diffusion models. Our attack method operates without requiring access to or control over the diffusion model's training or fine-tuning processes; it merely involves the insertion of poisoning data into the clean training dataset. This data, comprising poisoning images equipped with prompts, is generated by leveraging the powerful capabilities of multimodal large language models and text-guided image inpainting techniques. Our experimental results and analysis confirm the method's effectiveness. By integrating a minor portion of non-copyright-infringing stealthy poisoning data into the clean dataset-rendering it free from suspicion-we can prompt the finetuned diffusion models to produce copyrighted content when activated by specific trigger prompts. These findings underline potential pitfalls in the prevailing copyright protection strategies and underscore the necessity for increased scrutiny and preventative measures against the misuse of DMs.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Extensibility · INFORMS · HTTPS · LORA ·
2024 年 2 月 22 日

Image customization has been extensively studied in text-to-image (T2I) diffusion models, leading to impressive outcomes and applications. With the emergence of text-to-video (T2V) diffusion models, its temporal counterpart, motion customization, has not yet been well investigated. To address the challenge of one-shot motion customization, we propose Customize-A-Video that models the motion from a single reference video and adapting it to new subjects and scenes with both spatial and temporal varieties. It leverages low-rank adaptation (LoRA) on temporal attention layers to tailor the pre-trained T2V diffusion model for specific motion modeling from the reference videos. To disentangle the spatial and temporal information during the training pipeline, we introduce a novel concept of appearance absorbers that detach the original appearance from the single reference video prior to motion learning. Our proposed method can be easily extended to various downstream tasks, including custom video generation and editing, video appearance customization, and multiple motion combination, in a plug-and-play fashion. Our project page can be found at //anonymous-314.github.io.

Task embedding, a meta-learning technique that captures task-specific information, has become prevalent, especially in areas such as multi-task learning, model editing, and interpretability. However, it faces challenges with the emergence of prompt-guided Large Language Models (LLMs) operating in a gradientfree manner. Existing task embedding methods rely on fine-tuned, task-specific language models, which hinders the adaptability of task embeddings across diverse models, especially prompt-based LLMs. To unleash the power of task embedding in the era of LLMs, we propose a framework for unified task embeddings (FUTE), harmonizing task embeddings from various models, including smaller language models and LLMs with varied prompts, within a single vector space. Such uniformity enables the comparison and analysis of similarities amongst different models, extending the scope and utility of existing task embedding methods in addressing multi-model scenarios, whilst maintaining their performance to be comparable to architecture-specific methods.

Causality is fundamental in human cognition and has drawn attention in diverse research fields. With growing volumes of textual data, discerning causalities within text data is crucial, and causal text mining plays a pivotal role in extracting meaningful patterns. This study conducts comprehensive evaluations of ChatGPT's causal text mining capabilities. Firstly, we introduce a benchmark that extends beyond general English datasets, including domain-specific and non-English datasets. We also provide an evaluation framework to ensure fair comparisons between ChatGPT and previous approaches. Finally, our analysis outlines the limitations and future challenges in employing ChatGPT for causal text mining. Specifically, our analysis reveals that ChatGPT serves as a good starting point for various datasets. However, when equipped with a sufficient amount of training data, previous models still surpass ChatGPT's performance. Additionally, ChatGPT suffers from the tendency to falsely recognize non-causal sequences as causal sequences. These issues become even more pronounced with advanced versions of the model, such as GPT-4. In addition, we highlight the constraints of ChatGPT in handling complex causality types, including both intra/inter-sentential and implicit causality. The model also faces challenges with effectively leveraging in-context learning and domain adaptation. Our code is available on \url{//github.com/retarfi/gemcausal}

Large Language Models (LLMs) have demonstrated remarkable capabilities across various applications, fundamentally reshaping the landscape of natural language processing (NLP) research. However, recent evaluation frameworks often rely on the output probabilities of LLMs for predictions, primarily due to computational constraints, diverging from real-world LLM usage scenarios. While widely employed, the efficacy of these probability-based evaluation strategies remains an open research question. This study aims to scrutinize the validity of such probability-based evaluation methods within the context of using LLMs for Multiple Choice Questions (MCQs), highlighting their inherent limitations. Our empirical investigation reveals that the prevalent probability-based evaluation method inadequately aligns with generation-based prediction. Furthermore, current evaluation frameworks typically assess LLMs through predictive tasks based on output probabilities rather than directly generating responses, owing to computational limitations. We illustrate that these probability-based approaches do not effectively correspond with generative predictions. The outcomes of our study can enhance the understanding of LLM evaluation methodologies and provide insights for future research in this domain.

This paper analyzes a popular computational framework to solve infinite-dimensional Bayesian inverse problems, discretizing the prior and the forward model in a finite-dimensional weighted inner product space. We demonstrate the benefit of working on a weighted space by establishing operator-norm bounds for finite element and graph-based discretizations of Mat\'ern-type priors and deconvolution forward models. For linear-Gaussian inverse problems, we develop a general theory to characterize the error in the approximation to the posterior. We also embed the computational framework into ensemble Kalman methods and MAP estimators for nonlinear inverse problems. Our operator-norm bounds for prior discretizations guarantee the scalability and accuracy of these algorithms under mesh refinement.

The reliability of deep time series models is often compromised by their tendency to rely on confounding factors, which may lead to misleading results. Our newly recorded, naturally confounded dataset named P2S from a real mechanical production line emphasizes this. To tackle the challenging problem of mitigating confounders in time series data, we introduce Right on Time (RioT). Our method enables interactions with model explanations across both the time and frequency domain. Feedback on explanations in both domains is then used to constrain the model, steering it away from the annotated confounding factors. The dual-domain interaction strategy is crucial for effectively addressing confounders in time series datasets. We empirically demonstrate that RioT can effectively guide models away from the wrong reasons in P2S as well as popular time series classification and forecasting datasets.

Among the common applications of plenoptic cameras are depth reconstruction and post-shot refocusing. These require a calibration relating the camera-side light field to that of the scene. Numerous methods with this goal have been developed based on thin lens models for the plenoptic camera's main lens and microlenses. Our work addresses the often-overlooked role of the main lens exit pupil in these models and specifically in the decoding process of standard plenoptic camera (SPC) images. We formally deduce the connection between the refocusing distance and the resampling parameter for the decoded light field and provide an analysis of the errors that arise when the exit pupil is not considered. In addition, previous work is revisited with respect to the exit pupil's role and all theoretical results are validated through a ray-tracing-based simulation. With the public release of the evaluated SPC designs alongside our simulation and experimental data we aim to contribute to a more accurate and nuanced understanding of plenoptic camera optics.

Ensuring alignment, which refers to making models behave in accordance with human intentions [1,2], has become a critical task before deploying large language models (LLMs) in real-world applications. For instance, OpenAI devoted six months to iteratively aligning GPT-4 before its release [3]. However, a major challenge faced by practitioners is the lack of clear guidance on evaluating whether LLM outputs align with social norms, values, and regulations. This obstacle hinders systematic iteration and deployment of LLMs. To address this issue, this paper presents a comprehensive survey of key dimensions that are crucial to consider when assessing LLM trustworthiness. The survey covers seven major categories of LLM trustworthiness: reliability, safety, fairness, resistance to misuse, explainability and reasoning, adherence to social norms, and robustness. Each major category is further divided into several sub-categories, resulting in a total of 29 sub-categories. Additionally, a subset of 8 sub-categories is selected for further investigation, where corresponding measurement studies are designed and conducted on several widely-used LLMs. The measurement results indicate that, in general, more aligned models tend to perform better in terms of overall trustworthiness. However, the effectiveness of alignment varies across the different trustworthiness categories considered. This highlights the importance of conducting more fine-grained analyses, testing, and making continuous improvements on LLM alignment. By shedding light on these key dimensions of LLM trustworthiness, this paper aims to provide valuable insights and guidance to practitioners in the field. Understanding and addressing these concerns will be crucial in achieving reliable and ethically sound deployment of LLMs in various applications.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司