亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We apply topological data analysis (TDA) to speech classification problems and to the introspection of a pretrained speech model, HuBERT. To this end, we introduce a number of topological and algebraic features derived from Transformer attention maps and embeddings. We show that a simple linear classifier built on top of such features outperforms a fine-tuned classification head. In particular, we achieve an improvement of about $9\%$ accuracy and $5\%$ ERR on four common datasets; on CREMA-D, the proposed feature set reaches a new state of the art performance with accuracy $80.155$. We also show that topological features are able to reveal functional roles of speech Transformer heads; e.g., we find the heads capable to distinguish between pairs of sample sources (natural/synthetic) or voices without any downstream fine-tuning. Our results demonstrate that TDA is a promising new approach for speech analysis, especially for tasks that require structural prediction.

相關內容

The famous asynchronous computability theorem (ACT) relates the existence of an asynchronous wait-free shared memory protocol for solving a task with the existence of a simplicial map from a subdivision of the simplicial complex representing the inputs to the simplicial complex representing the allowable outputs. The original theorem relies on a correspondence between protocols and simplicial maps in finite models of computation that induce a compact topology. This correspondence, however, is far from obvious for computation models that induce a non-compact topology, and indeed previous attempts to extend the ACT have failed. This paper shows first that in every non-compact model, protocols solving tasks correspond to simplicial maps that need to be continuous. This correspondence is then used to prove that the approach used in ACT that equates protocols and simplicial complexes actually works for every compact model, and to show a generalized ACT, which applies also to non-compact computation models. Finally, the generalized ACT is applied to the set agreement task. Our study combines combinatorial and point-set topological aspects of the executions admitted by the computation model.

Hit song prediction, one of the emerging fields in music information retrieval (MIR), remains a considerable challenge. Being able to understand what makes a given song a hit is clearly beneficial to the whole music industry. Previous approaches to hit song prediction have focused on using audio features of a record. This study aims to improve the prediction result of the top 10 hits among Billboard Hot 100 songs using more alternative metadata, including song audio features provided by Spotify, song lyrics, and novel metadata-based features (title topic, popularity continuity and genre class). Five machine learning approaches are applied, including: k-nearest neighbours, Naive Bayes, Random Forest, Logistic Regression and Multilayer Perceptron. Our results show that Random Forest (RF) and Logistic Regression (LR) with all features (including novel features, song audio features and lyrics features) outperforms other models, achieving 89.1% and 87.2% accuracy, and 0.91 and 0.93 AUC, respectively. Our findings also demonstrate the utility of our novel music metadata features, which contributed most to the models' discriminative performance.

In graph learning, maps between graphs and their subgraphs frequently arise. For instance, when coarsening or rewiring operations are present along the pipeline, one needs to keep track of the corresponding nodes between the original and modified graphs. Classically, these maps are represented as binary node-to-node correspondence matrices and used as-is to transfer node-wise features between the graphs. In this paper, we argue that simply changing this map representation can bring notable benefits to graph learning tasks. Drawing inspiration from recent progress in geometry processing, we introduce a spectral representation for maps that is easy to integrate into existing graph learning models. This spectral representation is a compact and straightforward plug-in replacement and is robust to topological changes of the graphs. Remarkably, the representation exhibits structural properties that make it interpretable, drawing an analogy with recent results on smooth manifolds. We demonstrate the benefits of incorporating spectral maps in graph learning pipelines, addressing scenarios where a node-to-node map is not well defined, or in the absence of exact isomorphism. Our approach bears practical benefits in knowledge distillation and hierarchical learning, where we show comparable or improved performance at a fraction of the computational cost.

User interaction data in recommender systems is a form of dyadic relation that reflects the preferences of users with items. Learning the representations of these two discrete sets of objects, users and items, is critical for recommendation. Recent multimodal recommendation models leveraging multimodal features (e.g., images and text descriptions) have been demonstrated to be effective in improving recommendation accuracy. However, state-of-the-art models enhance the dyadic relations between users and items by considering either user-user or item-item relations, leaving the high-order relations of the other side (i.e., users or items) unexplored. Furthermore, we experimentally reveal that the current multimodality fusion methods in the state-of-the-art models may degrade their recommendation performance. That is, without tainting the model architectures, these models can achieve even better recommendation accuracy with uni-modal information. On top of the finding, we propose a model that enhances the dyadic relations by learning Dual RepresentAtions of both users and items via constructing homogeneous Graphs for multimOdal recommeNdation. We name our model as DRAGON. Specifically, DRAGON constructs the user-user graph based on the commonly interacted items and the item-item graph from item multimodal features. It then utilizes graph learning on both the user-item heterogeneous graph and the homogeneous graphs (user-user and item-item) to obtain the dual representations of users and items. To capture information from each modality, DRAGON employs a simple yet effective fusion method, attentive concatenation, to derive the representations of users and items. Extensive experiments on three public datasets and seven baselines show that DRAGON can outperform the strongest baseline by 22.03% on average. Various ablation studies are conducted on DRAGON to validate its effectiveness.

Knowledge graph embedding (KGE) is a increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.

Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.

Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).

Spectral clustering (SC) is a popular clustering technique to find strongly connected communities on a graph. SC can be used in Graph Neural Networks (GNNs) to implement pooling operations that aggregate nodes belonging to the same cluster. However, the eigendecomposition of the Laplacian is expensive and, since clustering results are graph-specific, pooling methods based on SC must perform a new optimization for each new sample. In this paper, we propose a graph clustering approach that addresses these limitations of SC. We formulate a continuous relaxation of the normalized minCUT problem and train a GNN to compute cluster assignments that minimize this objective. Our GNN-based implementation is differentiable, does not require to compute the spectral decomposition, and learns a clustering function that can be quickly evaluated on out-of-sample graphs. From the proposed clustering method, we design a graph pooling operator that overcomes some important limitations of state-of-the-art graph pooling techniques and achieves the best performance in several supervised and unsupervised tasks.

This paper aims at revisiting Graph Convolutional Neural Networks by bridging the gap between spectral and spatial design of graph convolutions. We theoretically demonstrate some equivalence of the graph convolution process regardless it is designed in the spatial or the spectral domain. The obtained general framework allows to lead a spectral analysis of the most popular ConvGNNs, explaining their performance and showing their limits. Moreover, the proposed framework is used to design new convolutions in spectral domain with a custom frequency profile while applying them in the spatial domain. We also propose a generalization of the depthwise separable convolution framework for graph convolutional networks, what allows to decrease the total number of trainable parameters by keeping the capacity of the model. To the best of our knowledge, such a framework has never been used in the GNNs literature. Our proposals are evaluated on both transductive and inductive graph learning problems. Obtained results show the relevance of the proposed method and provide one of the first experimental evidence of transferability of spectral filter coefficients from one graph to another. Our source codes are publicly available at: //github.com/balcilar/Spectral-Designed-Graph-Convolutions

Deep neural network architectures have traditionally been designed and explored with human expertise in a long-lasting trial-and-error process. This process requires huge amount of time, expertise, and resources. To address this tedious problem, we propose a novel algorithm to optimally find hyperparameters of a deep network architecture automatically. We specifically focus on designing neural architectures for medical image segmentation task. Our proposed method is based on a policy gradient reinforcement learning for which the reward function is assigned a segmentation evaluation utility (i.e., dice index). We show the efficacy of the proposed method with its low computational cost in comparison with the state-of-the-art medical image segmentation networks. We also present a new architecture design, a densely connected encoder-decoder CNN, as a strong baseline architecture to apply the proposed hyperparameter search algorithm. We apply the proposed algorithm to each layer of the baseline architectures. As an application, we train the proposed system on cine cardiac MR images from Automated Cardiac Diagnosis Challenge (ACDC) MICCAI 2017. Starting from a baseline segmentation architecture, the resulting network architecture obtains the state-of-the-art results in accuracy without performing any trial-and-error based architecture design approaches or close supervision of the hyperparameters changes.

北京阿比特科技有限公司