亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Segment Anything Model (SAM), a profound vision foundation model pre-trained on a large-scale dataset, breaks the boundaries of general segmentation and sparks various downstream applications. This paper introduces Hi-SAM, a unified model leveraging SAM for hierarchical text segmentation. Hi-SAM excels in text segmentation across four hierarchies, including stroke, word, text-line, and paragraph, while realizing layout analysis as well. Specifically, we first turn SAM into a high-quality text stroke segmentation (TSS) model through a parameter-efficient fine-tuning approach. We use this TSS model to iteratively generate the text stroke labels in a semi-automatical manner, unifying labels across the four text hierarchies in the HierText dataset. Subsequently, with these complete labels, we launch the end-to-end trainable Hi-SAM based on the TSS architecture with a customized hierarchical mask decoder. During inference, Hi-SAM offers both automatic mask generation (AMG) mode and promptable segmentation mode. In terms of the AMG mode, Hi-SAM segments text stroke foreground masks initially, then samples foreground points for hierarchical text mask generation and achieves layout analysis in passing. As for the promptable mode, Hi-SAM provides word, text-line, and paragraph masks with a single point click. Experimental results show the state-of-the-art performance of our TSS model: 84.86% fgIOU on Total-Text and 88.96% fgIOU on TextSeg for text stroke segmentation. Moreover, compared to the previous specialist for joint hierarchical detection and layout analysis on HierText, Hi-SAM achieves significant improvements: 4.73% PQ and 5.39% F1 on the text-line level, 5.49% PQ and 7.39% F1 on the paragraph level layout analysis, requiring 20x fewer training epochs. The code is available at //github.com/ymy-k/Hi-SAM.

相關內容

As an important and challenging problem in computer vision, PAnoramic Semantic Segmentation (PASS) gives complete scene perception based on an ultra-wide angle of view. Usually, prevalent PASS methods with 2D panoramic image input focus on solving image distortions but lack consideration of the 3D properties of original $360^{\circ}$ data. Therefore, their performance will drop a lot when inputting panoramic images with the 3D disturbance. To be more robust to 3D disturbance, we propose our Spherical Geometry-Aware Transformer for PAnoramic Semantic Segmentation (SGAT4PASS), considering 3D spherical geometry knowledge. Specifically, a spherical geometry-aware framework is proposed for PASS. It includes three modules, i.e., spherical geometry-aware image projection, spherical deformable patch embedding, and a panorama-aware loss, which takes input images with 3D disturbance into account, adds a spherical geometry-aware constraint on the existing deformable patch embedding, and indicates the pixel density of original $360^{\circ}$ data, respectively. Experimental results on Stanford2D3D Panoramic datasets show that SGAT4PASS significantly improves performance and robustness, with approximately a 2% increase in mIoU, and when small 3D disturbances occur in the data, the stability of our performance is improved by an order of magnitude. Our code and supplementary material are available at //github.com/TencentARC/SGAT4PASS.

The Segment Anything Model (SAM), a foundation model pretrained on millions of images and segmentation masks, has significantly advanced semantic segmentation, a fundamental task in computer vision. Despite its strengths, SAM encounters two major challenges. Firstly, it struggles with segmenting specific objects autonomously, as it relies on users to manually input prompts like points or bounding boxes to identify targeted objects. Secondly, SAM faces challenges in excelling at specific downstream tasks, like medical imaging, due to a disparity between the distribution of its pretraining data, which predominantly consists of general-domain images, and the data used in downstream tasks. Current solutions to these problems, which involve finetuning SAM, often lead to overfitting, a notable issue in scenarios with very limited data, like in medical imaging. To overcome these limitations, we introduce BLO-SAM, which finetunes SAM based on bi-level optimization (BLO). Our approach allows for automatic image segmentation without the need for manual prompts, by optimizing a learnable prompt embedding. Furthermore, it significantly reduces the risk of overfitting by training the model's weight parameters and the prompt embedding on two separate subsets of the training dataset, each at a different level of optimization. We apply BLO-SAM to diverse semantic segmentation tasks in general and medical domains. The results demonstrate BLO-SAM's superior performance over various state-of-the-art image semantic segmentation methods.

The Diffusion model, a prevalent framework for image generation, encounters significant challenges in terms of broad applicability due to its extended inference times and substantial memory requirements. Efficient Post-training Quantization (PTQ) is pivotal for addressing these issues in traditional models. Different from traditional models, diffusion models heavily depend on the time-step $t$ to achieve satisfactory multi-round denoising. Usually, $t$ from the finite set $\{1, \ldots, T\}$ is encoded to a temporal feature by a few modules totally irrespective of the sampling data. However, existing PTQ methods do not optimize these modules separately. They adopt inappropriate reconstruction targets and complex calibration methods, resulting in a severe disturbance of the temporal feature and denoising trajectory, as well as a low compression efficiency. To solve these, we propose a Temporal Feature Maintenance Quantization (TFMQ) framework building upon a Temporal Information Block which is just related to the time-step $t$ and unrelated to the sampling data. Powered by the pioneering block design, we devise temporal information aware reconstruction (TIAR) and finite set calibration (FSC) to align the full-precision temporal features in a limited time. Equipped with the framework, we can maintain the most temporal information and ensure the end-to-end generation quality. Extensive experiments on various datasets and diffusion models prove our state-of-the-art results. Remarkably, our quantization approach, for the first time, achieves model performance nearly on par with the full-precision model under 4-bit weight quantization. Additionally, our method incurs almost no extra computational cost and accelerates quantization time by $2.0 \times$ on LSUN-Bedrooms $256 \times 256$ compared to previous works. Our code is publicly available at //github.com/ModelTC/TFMQ-DM.

This paper introduces RecAI, a practical toolkit designed to augment or even revolutionize recommender systems with the advanced capabilities of Large Language Models (LLMs). RecAI provides a suite of tools, including Recommender AI Agent, Recommendation-oriented Language Models, Knowledge Plugin, RecExplainer, and Evaluator, to facilitate the integration of LLMs into recommender systems from multifaceted perspectives. The new generation of recommender systems, empowered by LLMs, are expected to be more versatile, explainable, conversational, and controllable, paving the way for more intelligent and user-centric recommendation experiences. We hope the open-source of RecAI can help accelerate evolution of new advanced recommender systems. The source code of RecAI is available at \url{//github.com/microsoft/RecAI}.

Music recommendation for videos attracts growing interest in multi-modal research. However, existing systems focus primarily on content compatibility, often ignoring the users' preferences. Their inability to interact with users for further refinements or to provide explanations leads to a less satisfying experience. We address these issues with MuseChat, a first-of-its-kind dialogue-based recommendation system that personalizes music suggestions for videos. Our system consists of two key functionalities with associated modules: recommendation and reasoning. The recommendation module takes a video along with optional information including previous suggested music and user's preference as inputs and retrieves an appropriate music matching the context. The reasoning module, equipped with the power of Large Language Model (Vicuna-7B) and extended to multi-modal inputs, is able to provide reasonable explanation for the recommended music. To evaluate the effectiveness of MuseChat, we build a large-scale dataset, conversational music recommendation for videos, that simulates a two-turn interaction between a user and a recommender based on accurate music track information. Experiment results show that MuseChat achieves significant improvements over existing video-based music retrieval methods as well as offers strong interpretability and interactability.

We propose the first Large Reconstruction Model (LRM) that predicts the 3D model of an object from a single input image within just 5 seconds. In contrast to many previous methods that are trained on small-scale datasets such as ShapeNet in a category-specific fashion, LRM adopts a highly scalable transformer-based architecture with 500 million learnable parameters to directly predict a neural radiance field (NeRF) from the input image. We train our model in an end-to-end manner on massive multi-view data containing around 1 million objects, including both synthetic renderings from Objaverse and real captures from MVImgNet. This combination of a high-capacity model and large-scale training data empowers our model to be highly generalizable and produce high-quality 3D reconstructions from various testing inputs, including real-world in-the-wild captures and images created by generative models. Video demos and interactable 3D meshes can be found on our LRM project webpage: //yiconghong.me/LRM.

We present Pix2Gif, a motion-guided diffusion model for image-to-GIF (video) generation. We tackle this problem differently by formulating the task as an image translation problem steered by text and motion magnitude prompts, as shown in teaser fig. To ensure that the model adheres to motion guidance, we propose a new motion-guided warping module to spatially transform the features of the source image conditioned on the two types of prompts. Furthermore, we introduce a perceptual loss to ensure the transformed feature map remains within the same space as the target image, ensuring content consistency and coherence. In preparation for the model training, we meticulously curated data by extracting coherent image frames from the TGIF video-caption dataset, which provides rich information about the temporal changes of subjects. After pretraining, we apply our model in a zero-shot manner to a number of video datasets. Extensive qualitative and quantitative experiments demonstrate the effectiveness of our model -- it not only captures the semantic prompt from text but also the spatial ones from motion guidance. We train all our models using a single node of 16xV100 GPUs. Code, dataset and models are made public at: //hiteshk03.github.io/Pix2Gif/.

We present SplattingAvatar, a hybrid 3D representation of photorealistic human avatars with Gaussian Splatting embedded on a triangle mesh, which renders over 300 FPS on a modern GPU and 30 FPS on a mobile device. We disentangle the motion and appearance of a virtual human with explicit mesh geometry and implicit appearance modeling with Gaussian Splatting. The Gaussians are defined by barycentric coordinates and displacement on a triangle mesh as Phong surfaces. We extend lifted optimization to simultaneously optimize the parameters of the Gaussians while walking on the triangle mesh. SplattingAvatar is a hybrid representation of virtual humans where the mesh represents low-frequency motion and surface deformation, while the Gaussians take over the high-frequency geometry and detailed appearance. Unlike existing deformation methods that rely on an MLP-based linear blend skinning (LBS) field for motion, we control the rotation and translation of the Gaussians directly by mesh, which empowers its compatibility with various animation techniques, e.g., skeletal animation, blend shapes, and mesh editing. Trainable from monocular videos for both full-body and head avatars, SplattingAvatar shows state-of-the-art rendering quality across multiple datasets.

The rapid advances in Vision Transformer (ViT) refresh the state-of-the-art performances in various vision tasks, overshadowing the conventional CNN-based models. This ignites a few recent striking-back research in the CNN world showing that pure CNN models can achieve as good performance as ViT models when carefully tuned. While encouraging, designing such high-performance CNN models is challenging, requiring non-trivial prior knowledge of network design. To this end, a novel framework termed Mathematical Architecture Design for Deep CNN (DeepMAD) is proposed to design high-performance CNN models in a principled way. In DeepMAD, a CNN network is modeled as an information processing system whose expressiveness and effectiveness can be analytically formulated by their structural parameters. Then a constrained mathematical programming (MP) problem is proposed to optimize these structural parameters. The MP problem can be easily solved by off-the-shelf MP solvers on CPUs with a small memory footprint. In addition, DeepMAD is a pure mathematical framework: no GPU or training data is required during network design. The superiority of DeepMAD is validated on multiple large-scale computer vision benchmark datasets. Notably on ImageNet-1k, only using conventional convolutional layers, DeepMAD achieves 0.7% and 1.5% higher top-1 accuracy than ConvNeXt and Swin on Tiny level, and 0.8% and 0.9% higher on Small level.

With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at //github.com/KaiyangZhou/CoOp.

北京阿比特科技有限公司