亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A palindromic substring $T[i.. j]$ of a string $T$ is said to be a shortest unique palindromic substring (SUPS) in $T$ for an interval $[p, q]$ if $T[i.. j]$ is a shortest palindromic substring such that $T[i.. j]$ occurs only once in $T$, and $[i, j]$ contains $[p, q]$. The SUPS problem is, given a string $T$ of length $n$, to construct a data structure that can compute all the SUPSs for any given query interval. It is known that any SUPS query can be answered in $O(\alpha)$ time after $O(n)$-time preprocessing, where $\alpha$ is the number of SUPSs to output [Inoue et al., 2018]. In this paper, we first show that $\alpha$ is at most $4$, and the upper bound is tight. We also show that the total sum of lengths of minimal unique palindromic substrings of string $T$, which is strongly related to SUPSs, is $O(n)$. Then, we present the first $O(n)$-bits data structures that can answer any SUPS query in constant time. Also, we present an algorithm to solve the SUPS problem for a sliding window that can answer any query in $O(\log\log W)$ time and update data structures in amortized $O(\log\sigma + \log\log W)$ time, where $W$ is the size of the window, and $\sigma$ is the alphabet size. Furthermore, we consider the SUPS problem in the after-edit model and present an efficient algorithm. Namely, we present an algorithm that uses $O(n)$ time for preprocessing and answers any $k$ SUPS queries in $O(\log n\log\log n + k\log\log n)$ time after single character substitution. Finally, as a by-product, we propose a fully-dynamic data structure for range minimum queries (RmQs) with a constraint where the width of each query range is limited to poly-logarithmic. The constrained RmQ data structure can answer such a query in constant time and support a single-element edit operation in amortized constant time.

相關內容

In this paper we study the orbit closure problem for a reductive group $G\subseteq GL(X)$ acting on a finite dimensional vector space $V$ over $\C$. We assume that the center of $GL(X)$ lies within $G$ and acts on $V$ through a fixed non-trivial character. We study points $y,z\in V$ where (i) $z$ is obtained as the leading term of the action of a 1-parameter subgroup $\lambda (t)\subseteq G$ on $y$, and (ii) $y$ and $z$ have large distinctive stabilizers $K,H \subseteq G$. Let $O(z)$ (resp. $O(y)$) denote the $G$-orbits of $z$ (resp. $y$), and $\overline{O(z)}$ (resp. $\overline{O(y)}$) their closures, then (i) implies that $z\in \overline{O(y)}$. We address the question: under what conditions can (i) and (ii) be simultaneously satisfied, i.e, there exists a 1-PS $\lambda \subseteq G$ for which $z$ is observed as a limit of $y$. Using $\lambda$, we develop a leading term analysis which applies to $V$ as well as to ${\cal G}= Lie(G)$ the Lie algebra of $G$ and its subalgebras ${\cal K}$ and ${\cal H}$, the Lie algebras of $K$ and $H$ respectively. Through this we construct the Lie algebra $\hat{\cal K} \subseteq {\cal H}$ which connects $y$ and $z$ through their Lie algebras. We develop the properties of $\hat{\cal K}$ and relate it to the action of ${\cal H}$ on $\overline{N}=V/T_z O(z)$, the normal slice to the orbit $O(z)$. We examine the case of {\em alignment} when a semisimple element belongs to both ${\cal H}$ and ${\cal K}$, and the conditions for the same. We illustrate some consequences of alignment. Next, we examine the possibility of {\em intermediate $G$-varieties} $W$ which lie between the orbit closures of $z$ and $y$, i.e. $\overline{O(z)} \subsetneq W \subsetneq O(y)$. These have a direct bearing on representation theoretic as well as geometric properties which connect $z$ and $y$.

We investigate the randomized decision tree complexity of a specific class of read-once threshold functions. A read-once threshold formula can be defined by a rooted tree, every internal node of which is labeled by a threshold function $T_k^n$ (with output 1 only when at least $k$ out of $n$ input bits are 1) and each leaf by a distinct variable. Such a tree defines a Boolean function in a natural way. We focus on the randomized decision tree complexity of such functions, when the underlying tree is a uniform tree with all its internal nodes labeled by the same threshold function. We prove lower bounds of the form $c(k,n)^d$, where $d$ is the depth of the tree. We also treat trees with alternating levels of AND and OR gates separately and show asymptotically optimal bounds, extending the known bounds for the binary case.

In this paper we show that using implicative algebras one can produce models of set theory generalizing Heyting/Boolean-valued models and realizability models of (I)ZF, both in intuitionistic and classical logic. This has as consequence that any topos which is obtained from a Set-based tripos as the result of the tripos-to-topos construction hosts a model of intuitionistic or classical set theory, provided a large enough strongly inaccessible cardinal exists.

The paper presents a spectral representation for general type two-sided discrete time signals from $\ell_\infty$, i.e for all bounded discrete time signals, including signals that do not vanish at $\pm\infty$. This representation allows to extend on the general type signals from $\ell_\infty$ the notions of transfer functions, spectrum gaps, and filters, and to obtain some frequency conditions of predictability and data recoverability.

The concatenation of four Boolean bent functions $f=f_1||f_2||f_3||f_4$ is bent if and only if the dual bent condition $f_1^* + f_2^* + f_3^* + f_4^* =1$ is satisfied. However, to specify four bent functions satisfying this duality condition is in general quite a difficult task. Commonly, to simplify this problem, certain connections between $f_i$ are assumed, as well as functions $f_i$ of a special shape are considered, e.g., $f_i(x,y)=x\cdot\pi_i(y)+h_i(y)$ are Maiorana-McFarland bent functions. In the case when permutations $\pi_i$ of $\mathbb{F}_2^m$ have the $(\mathcal{A}_m)$ property and Maiorana-McFarland bent functions $f_i$ satisfy the additional condition $f_1+f_2+f_3+f_4=0$, the dual bent condition is known to have a relatively simple shape allowing to specify the functions $f_i$ explicitly. In this paper, we generalize this result for the case when Maiorana-McFarland bent functions $f_i$ satisfy the condition $f_1(x,y)+f_2(x,y)+f_3(x,y)+f_4(x,y)=s(y)$ and provide a construction of new permutations with the $(\mathcal{A}_m)$ property from the old ones. Combining these two results, we obtain a recursive construction method of bent functions satisfying the dual bent condition. Moreover, we provide a generic condition on the Maiorana-McFarland bent functions stemming from the permutations of $\mathbb{F}_2^m$ with the $(\mathcal{A}_m)$ property, such that their concatenation does not belong, up to equivalence, to the Maiorana-McFarland class. Using monomial permutations $\pi_i$ of $\mathbb{F}_{2^m}$ with the $(\mathcal{A}_m)$ property and monomial functions $h_i$ on $\mathbb{F}_{2^m}$, we provide explicit constructions of such bent functions. Finally, with our construction method, we explain how one can construct homogeneous cubic bent functions, noticing that only very few design methods of these objects are known.

We propose a CJ-FEAST GSVDsolver to compute a partial generalized singular value decomposition (GSVD) of a large matrix pair $(A,B)$ with the generalized singular values in a given interval. The solver is a highly nontrivial extension of the FEAST eigensolver for the (generalized) eigenvalue problem and CJ-FEAST SVDsolver for the SVD problem. For a partial GSVD problem, given three left and right searching subspaces, we propose a general projection method that works on $(A,B)$ {\em directly}, and computes approximations to the desired GSVD components. For the concerning GSVD problem, we exploit the Chebyshev--Jackson (CJ) series to construct an approximate spectral projector of the generalized eigenvalue problem of the matrix pair $(A^TA,B^TB)$ associated with the generalized singular values of interest, and use subspace iteration on it to generate a right subspace. Premultiplying it with $A$ and $B$ constructs two left subspaces. Applying the general projection method to the subspaces constructed leads to the CJ-FEAST GSVDsolver. We derive accuracy estimates for the approximate spectral projector and its eigenvalues, and establish a number of convergence results on the underlying subspaces and the approximate GSVD components obtained by the CJ-FEAST GSVDsolver. We propose general-purpose choice strategies for the series degree and subspace dimension. Numerical experiments illustrate the efficiency of the CJ-FEAST GSVDsolver.

The categorical Gini correlation, $\rho_g$, was proposed by Dang et al. to measure the dependence between a categorical variable, $Y$ , and a numerical variable, $X$. It has been shown that $\rho_g$ has more appealing properties than current existing dependence measurements. In this paper, we develop the jackknife empirical likelihood (JEL) method for $\rho_g$. Confidence intervals for the Gini correlation are constructed without estimating the asymptotic variance. Adjusted and weighted JEL are explored to improve the performance of the standard JEL. Simulation studies show that our methods are competitive to existing methods in terms of coverage accuracy and shortness of confidence intervals. The proposed methods are illustrated in an application on two real datasets.

The Unitary Synthesis Problem (Aaronson-Kuperberg 2007) asks whether any $n$-qubit unitary $U$ can be implemented by an efficient quantum algorithm $A$ augmented with an oracle that computes an arbitrary Boolean function $f$. In other words, can the task of implementing any unitary be efficiently reduced to the task of implementing any Boolean function? In this work, we prove a one-query lower bound for unitary synthesis. We show that there exist unitaries $U$ such that no quantum polynomial-time oracle algorithm $A^f$ can implement $U$, even approximately, if it only makes one (quantum) query to $f$. Our approach also has implications for quantum cryptography: we prove (relative to a random oracle) the existence of quantum cryptographic primitives that remain secure against all one-query adversaries $A^{f}$. Since such one-query algorithms can decide any language, solve any classical search problem, and even prepare any quantum state, our result suggests that implementing random unitaries and breaking quantum cryptography may be harder than all of these tasks. To prove this result, we formulate unitary synthesis as an efficient challenger-adversary game, which enables proving lower bounds by analyzing the maximum success probability of an adversary $A^f$. Our main technical insight is to identify a natural spectral relaxation of the one-query optimization problem, which we bound using tools from random matrix theory. We view our framework as a potential avenue to rule out polynomial-query unitary synthesis, and we state conjectures in this direction.

We present a polymorphic linear lambda-calculus as a proof language for second-order intuitionistic linear logic. The calculus includes addition and scalar multiplication, enabling the proof of a linearity result at the syntactic level.

The stability of an approximating sequence $(A_n)$ for an operator $A$ usually requires, besides invertibility of $A$, the invertibility of further operators, say $B, C, \dots$, that are well-associated to the sequence $(A_n)$. We study this set, $\{A,B,C,\dots\}$, of so-called stability indicators of $(A_n)$ and connect it to the asymptotics of $\|A_n\|$, $\|A_n^{-1}\|$ and $\kappa(A_n)=\|A_n\|\|A_n^{-1}\|$ as well as to spectral pollution by showing that $\limsup {\rm Spec}_\varepsilon A_n= {\rm Spec}_\varepsilon A\cup{\rm Spec}_\varepsilon B\cup{\rm Spec}_\varepsilon C\cup\dots$. We further specify, for each of $\|A_n\|$, $\|A_n^{-1}\|$, $\kappa(A_n)$ and ${\rm Spec}_\varepsilon A_n$, under which conditions even convergence applies.

北京阿比特科技有限公司