Most Simultaneous localisation and mapping (SLAM) systems have traditionally assumed a static world, which does not align with real-world scenarios. To enable robots to safely navigate and plan in dynamic environments, it is essential to employ representations capable of handling moving objects. Dynamic SLAM is an emerging field in SLAM research as it improves the overall system accuracy while providing additional estimation of object motions. State-of-the-art literature informs two main formulations for Dynamic SLAM, representing dynamic object points in either the world or object coordinate frame. While expressing object points in a local reference frame may seem intuitive, it may not necessarily lead to the most accurate and robust solutions. This paper conducts and presents a thorough analysis of various Dynamic SLAM formulations, identifying the best approach to address the problem. To this end, we introduce a front-end agnostic framework using GTSAM that can be used to evaluate various Dynamic SLAM formulations.
The breakthrough in AI and Machine Learning has brought a new revolution in robotics, resulting in the construction of more sophisticated robotic systems. Not only can these robotic systems benefit all domains, but also can accomplish tasks that seemed to be unimaginable a few years ago. From swarms of autonomous small robots working together to more very heavy and large objects, to seemingly indestructible robots capable of going to the harshest environments, we can see robotic systems designed for every task imaginable. Among them, a key scenario where robotic systems can benefit is in disaster response scenarios and rescue operations. Robotic systems are capable of successfully conducting tasks such as removing heavy materials, utilizing multiple advanced sensors for finding objects of interest, moving through debris and various inhospitable environments, and not the least have flying capabilities. Even with so much potential, we rarely see the utilization of robotic systems in disaster response scenarios and rescue missions. Many factors could be responsible for the low utilization of robotic systems in such scenarios. One of the key factors involve challenges related to Human-Robot Interaction (HRI) issues. Therefore, in this paper, we try to understand the HRI challenges involving the utilization of robotic systems in disaster response and rescue operations. Furthermore, we go through some of the proposed robotic systems designed for disaster response scenarios and identify the HRI challenges of those systems. Finally, we try to address the challenges by introducing ideas from various proposed research works.
A robust Gray code, formally introduced by (Lolck and Pagh, SODA 2024), is a Gray code that additionally has the property that, given a noisy version of the encoding of an integer $j$, it is possible to reconstruct $\hat{j}$ so that $|j - \hat{j}|$ is small with high probability. That work presented a transformation that transforms a binary code $C$ of rate $R$ to a robust Gray code with rate $\Omega(R)$, where the constant in the $\Omega(\cdot)$ can be at most $1/4$. We improve upon their construction by presenting a transformation from a (linear) binary code $C$ to a robust Gray code with similar robustness guarantees, but with rate that can approach $R/2$.
Foundation vision or vision-language models are trained on large unlabeled or noisy data and learn robust representations that can achieve impressive zero- or few-shot performance on diverse tasks. Given these properties, they are a natural fit for active learning (AL), which aims to maximize labeling efficiency, but the full potential of foundation models has not been explored in the context of AL, specifically in the low-budget regime. In this work, we evaluate how foundation models influence three critical components of effective AL, namely, 1) initial labeled pool selection, 2) ensuring diverse sampling, and 3) the trade-off between representative and uncertainty sampling. We systematically study how the robust representations of foundation models (DINOv2, OpenCLIP) challenge existing findings in active learning. Our observations inform the principled construction of a new simple and elegant AL strategy that balances uncertainty estimated via dropout with sample diversity. We extensively test our strategy on many challenging image classification benchmarks, including natural images as well as out-of-domain biomedical images that are relatively understudied in the AL literature. Source code will be made available.
Large language models (LLMs) are capable of generating multiple responses to a single prompt, yet little effort has been expended to help end-users or system designers make use of this capability. In this paper, we explore how to present many LLM responses at once. We design five features, which include both pre-existing and novel methods for computing similarities and differences across textual documents, as well as how to render their outputs. We report on a controlled user study (n=24) and eight case studies evaluating these features and how they support users in different tasks. We find that the features support a wide variety of sensemaking tasks and even make tasks previously considered to be too difficult by our participants now tractable. Finally, we present design guidelines to inform future explorations of new LLM interfaces.
As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.
Graph neural networks (GNNs) have been demonstrated to be a powerful algorithmic model in broad application fields for their effectiveness in learning over graphs. To scale GNN training up for large-scale and ever-growing graphs, the most promising solution is distributed training which distributes the workload of training across multiple computing nodes. However, the workflows, computational patterns, communication patterns, and optimization techniques of distributed GNN training remain preliminarily understood. In this paper, we provide a comprehensive survey of distributed GNN training by investigating various optimization techniques used in distributed GNN training. First, distributed GNN training is classified into several categories according to their workflows. In addition, their computational patterns and communication patterns, as well as the optimization techniques proposed by recent work are introduced. Second, the software frameworks and hardware platforms of distributed GNN training are also introduced for a deeper understanding. Third, distributed GNN training is compared with distributed training of deep neural networks, emphasizing the uniqueness of distributed GNN training. Finally, interesting issues and opportunities in this field are discussed.
Knowledge graphs represent factual knowledge about the world as relationships between concepts and are critical for intelligent decision making in enterprise applications. New knowledge is inferred from the existing facts in the knowledge graphs by encoding the concepts and relations into low-dimensional feature vector representations. The most effective representations for this task, called Knowledge Graph Embeddings (KGE), are learned through neural network architectures. Due to their impressive predictive performance, they are increasingly used in high-impact domains like healthcare, finance and education. However, are the black-box KGE models adversarially robust for use in domains with high stakes? This thesis argues that state-of-the-art KGE models are vulnerable to data poisoning attacks, that is, their predictive performance can be degraded by systematically crafted perturbations to the training knowledge graph. To support this argument, two novel data poisoning attacks are proposed that craft input deletions or additions at training time to subvert the learned model's performance at inference time. These adversarial attacks target the task of predicting the missing facts in knowledge graphs using KGE models, and the evaluation shows that the simpler attacks are competitive with or outperform the computationally expensive ones. The thesis contributions not only highlight and provide an opportunity to fix the security vulnerabilities of KGE models, but also help to understand the black-box predictive behaviour of KGE models.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.
We present a monocular Simultaneous Localization and Mapping (SLAM) using high level object and plane landmarks, in addition to points. The resulting map is denser, more compact and meaningful compared to point only SLAM. We first propose a high order graphical model to jointly infer the 3D object and layout planes from single image considering occlusions and semantic constraints. The extracted cuboid object and layout planes are further optimized in a unified SLAM framework. Objects and planes can provide more semantic constraints such as Manhattan and object supporting relationships compared to points. Experiments on various public and collected datasets including ICL NUIM and TUM mono show that our algorithm can improve camera localization accuracy compared to state-of-the-art SLAM and also generate dense maps in many structured environments.