亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We investigate the linear chromatic number $\chi_{\text{lin}}(G(n,p))$ of the binomial random graph $G(n,p)$ on $n$ vertices in which each edge appears independently with probability $p=p(n)$. For dense random graphs ($np \to \infty$ as $n \to \infty$), we show that asymptotically almost surely $\chi_{\text{lin}}(G(n,p)) \ge n (1 - O( (np)^{-1/2} ) ) = n(1-o(1))$. Understanding the order of the linear chromatic number for subcritical random graphs ($np < 1$) and critical ones ($np=1$) is relatively easy. However, supercritical sparse random graphs ($np = c$ for some constant $c > 1$) remain to be investigated.

相關內容

The Learning With Errors ($\mathsf{LWE}$) problem asks to find $\mathbf{s}$ from an input of the form $(\mathbf{A}, \mathbf{b} = \mathbf{A}\mathbf{s}+\mathbf{e}) \in (\mathbb{Z}/q\mathbb{Z})^{m \times n} \times (\mathbb{Z}/q\mathbb{Z})^{m}$, for a vector $\mathbf{e}$ that has small-magnitude entries. In this work, we do not focus on solving $\mathsf{LWE}$ but on the task of sampling instances. As these are extremely sparse in their range, it may seem plausible that the only way to proceed is to first create $\mathbf{s}$ and $\mathbf{e}$ and then set $\mathbf{b} = \mathbf{A}\mathbf{s}+\mathbf{e}$. In particular, such an instance sampler knows the solution. This raises the question whether it is possible to obliviously sample $(\mathbf{A}, \mathbf{A}\mathbf{s}+\mathbf{e})$, namely, without knowing the underlying $\mathbf{s}$. A variant of the assumption that oblivious $\mathsf{LWE}$ sampling is hard has been used in a series of works constructing Succinct Non-interactive Arguments of Knowledge (SNARKs) in the standard model. As the assumption is related to $\mathsf{LWE}$, these SNARKs have been conjectured to be secure in the presence of quantum adversaries. Our main result is a quantum polynomial-time algorithm that samples well-distributed $\mathsf{LWE}$ instances while provably not knowing the solution, under the assumption that $\mathsf{LWE}$ is hard. Moreover, the approach works for a vast range of $\mathsf{LWE}$ parametrizations, including those used in the above-mentioned SNARKs.

We show that $n$-bit integers can be factorized by independently running a quantum circuit with $\tilde{O}(n^{3/2})$ gates for $\sqrt{n}+4$ times, and then using polynomial-time classical post-processing. The correctness of the algorithm relies on a number-theoretic heuristic assumption reminiscent of those used in subexponential classical factorization algorithms. It is currently not clear if the algorithm can lead to improved physical implementations in practice.

This paper investigates the spectral norm version of the column subset selection problem. Given a matrix $\mathbf{A}\in\mathbb{R}^{n\times d}$ and a positive integer $k\leq\text{rank}(\mathbf{A})$, the objective is to select exactly $k$ columns of $\mathbf{A}$ that minimize the spectral norm of the residual matrix after projecting $\mathbf{A}$ onto the space spanned by the selected columns. We use the method of interlacing polynomials introduced by Marcus-Spielman-Srivastava to derive a new upper bound on the minimal approximation error. This new bound is asymptotically sharp when the matrix $\mathbf{A}\in\mathbb{R}^{n\times d}$ obeys a spectral power-law decay. The relevant expected characteristic polynomials can be written as an extension of the expected polynomial for the restricted invertibility problem, incorporating two extra variable substitution operators. Finally, we propose a deterministic polynomial-time algorithm that achieves this error bound up to a computational error.

An infinite sequence of sets $\left\{B_{n}\right\}_{n\in\mathbb{N}}$ is said to be a heterochromatic sequence from an infinite sequence of families $\left\{ \mathcal{F}_{n} \right\}_{n \in \mathbb{N}}$, if there exists a strictly increasing sequence of natural numbers $\left\{ i_{n}\right\}_{n \in \mathbb{N}}$ such that for all $n \in \mathbb{N}$ we have $B_{n} \in \mathcal{F}_{i_{n}}$. In this paper, we have proved that if for each $n\in\mathbb{N}$, $\mathcal{F}_n$ is a family of {\em nicely shaped} convex sets in $\mathbb{R}^d$ such that each heterochromatic sequence $\left\{B_{n}\right\}_{n\in\mathbb{N}}$ from $\left\{ \mathcal{F}_{n} \right\}_{n \in \mathbb{N}}$ contains at least $k+2$ sets that can be pierced by a single $k$-flat ($k$-dimensional affine space) then all but finitely many families in $\left\{\mathcal{F}_{n}\right\}_{n\in \mathbb{N}}$ can be pierced by finitely many $k$-flats. This result can be considered as a {\em countably colorful} generalization of the $(\aleph_0, k+2)$-theorem proved by Keller and Perles (Symposium on Computational Geometry 2022). We have also established the tightness of our result by proving a number of no-go theorems.

Given two sets $\mathit{R}$ and $\mathit{B}$ of at most $\mathit{n}$ points in the plane, we present efficient algorithms to find a two-line linear classifier that best separates the ``red'' points in $\mathit{R}$ from the ``blue'' points in $B$ and is robust to outliers. More precisely, we find a region $\mathit{W}_\mathit{B}$ bounded by two lines, so either a halfplane, strip, wedge, or double wedge, containing (most of) the blue points $\mathit{B}$, and few red points. Our running times vary between optimal $O(n\log n)$ and $O(n^4)$, depending on the type of region $\mathit{W}_\mathit{B}$ and whether we wish to minimize only red outliers, only blue outliers, or both.

In the kernel density estimation (KDE) problem one is given a kernel $K(x, y)$ and a dataset $P$ of points in a Euclidean space, and must prepare a data structure that can quickly answer density queries: given a point $q$, output a $(1+\epsilon)$-approximation to $\mu:=\frac1{|P|}\sum_{p\in P} K(p, q)$. The classical approach to KDE is the celebrated fast multipole method of [Greengard and Rokhlin]. The fast multipole method combines a basic space partitioning approach with a multidimensional Taylor expansion, which yields a $\approx \log^d (n/\epsilon)$ query time (exponential in the dimension $d$). A recent line of work initiated by [Charikar and Siminelakis] achieved polynomial dependence on $d$ via a combination of random sampling and randomized space partitioning, with [Backurs et al.] giving an efficient data structure with query time $\approx \mathrm{poly}{\log(1/\mu)}/\epsilon^2$ for smooth kernels. Quadratic dependence on $\epsilon$, inherent to the sampling methods, is prohibitively expensive for small $\epsilon$. This issue is addressed by quasi-Monte Carlo methods in numerical analysis. The high level idea in quasi-Monte Carlo methods is to replace random sampling with a discrepancy based approach -- an idea recently applied to coresets for KDE by [Phillips and Tai]. The work of Phillips and Tai gives a space efficient data structure with query complexity $\approx 1/(\epsilon \mu)$. This is polynomially better in $1/\epsilon$, but exponentially worse in $1/\mu$. We achieve the best of both: a data structure with $\approx \mathrm{poly}{\log(1/\mu)}/\epsilon$ query time for smooth kernel KDE. Our main insight is a new way to combine discrepancy theory with randomized space partitioning inspired by, but significantly more efficient than, that of the fast multipole methods. We hope that our techniques will find further applications to linear algebra for kernel matrices.

We present a new algorithm for finding isolated zeros of a system of real-valued functions in a bounded interval in $\mathbb{R}^n$. It uses the Chebyshev proxy method combined with a mixture of subdivision, reduction methods, and elimination checks that leverage special properties of Chebyshev polynomials. We prove the method has R-quadratic convergence locally near simple zeros of the system. We also analyze the temporal complexity and the numerical stability of the algorithm and provide numerical evidence in dimensions up to three that the method is both fast and accurate on a wide range of problems. The algorithm should also work well in higher dimensions. Our tests show that the algorithm outperforms other standard methods on this problem of finding all real zeros in a bounded domain. Our Python implementation of the algorithm is publicly available.

Given a complex high-dimensional distribution over $\{\pm 1\}^n$, what is the best way to increase the expected number of $+1$'s by controlling the values of only a small number of variables? Such a problem is known as influence maximization and has been widely studied in social networks, biology, and computer science. In this paper, we consider influence maximization on the Ising model which is a prototypical example of undirected graphical models and has wide applications in many real-world problems. We establish a sharp computational phase transition for influence maximization on sparse Ising models under a bounded budget: In the high-temperature regime, we give a linear-time algorithm for finding a small subset of variables and their values which achieve nearly optimal influence; In the low-temperature regime, we show that the influence maximization problem cannot be solved in polynomial time under commonly-believed complexity assumption. The critical temperature coincides with the tree uniqueness/non-uniqueness threshold for Ising models which is also a critical point for other computational problems including approximate sampling and counting.

For a permutation $\pi: [K]\rightarrow [K]$, a sequence $f: \{1,2,\cdots, n\}\rightarrow \mathbb R$ contains a $\pi$-pattern of size $K$, if there is a sequence of indices $(i_1, i_2, \cdots, i_K)$ ($i_1<i_2<\cdots<i_K$), satisfying that $f(i_a)<f(i_b)$ if $\pi(a)<\pi(b)$, for $a,b\in [K]$. Otherwise, $f$ is referred to as $\pi$-free. For the special case where $\pi = (1,2,\cdots, K)$, it is referred to as the monotone pattern. \cite{newman2017testing} initiated the study of testing $\pi$-freeness with one-sided error. They focused on two specific problems, testing the monotone permutations and the $(1,3,2)$ permutation. For the problem of testing monotone permutation $(1,2,\cdots,K)$, \cite{ben2019finding} improved the $(\log n)^{O(K^2)}$ non-adaptive query complexity of \cite{newman2017testing} to $O((\log n)^{\lfloor \log_{2} K\rfloor})$. Further, \cite{ben2019optimal} proposed an adaptive algorithm with $O(\log n)$ query complexity. However, no progress has yet been made on the problem of testing $(1,3,2)$-freeness. In this work, we present an adaptive algorithm for testing $(1,3,2)$-freeness. The query complexity of our algorithm is $O(\epsilon^{-2}\log^4 n)$, which significantly improves over the $O(\epsilon^{-7}\log^{26}n)$-query adaptive algorithm of \cite{newman2017testing}. This improvement is mainly achieved by the proposal of a new structure embedded in the patterns.

We preprocess the input subdivision with $n$ points on the plane in $O(n\sqrt{\log n})$ time to facilitate point location in constant time. Previously the preprocessing time is $O(n\log n)$ and point location takes $O(\log n)$ time.

北京阿比特科技有限公司