In the author's previous paper (Zhang et al. 2022), exponential convergence was proved for the perfectly matched layers (PML) approximation of scattering problems with periodic surfaces in 2D. However, due to the overlapping of singularities, an exceptional case, i.e., when the wave number is a half integer, has to be excluded in the proof. However, numerical results for these cases still have fast convergence rate and this motivates us to go deeper into these cases. In this paper, we focus on these cases and prove that the fast convergence result for the discretized form. Numerical examples are also presented to support our theoretical results.
This paper introduces a novel evaluation framework for Large Language Models (LLMs) such as Llama-2 and Mistral, focusing on the adaptation of Precision and Recall metrics from image generation to text generation. This approach allows for a nuanced assessment of the quality and diversity of generated text without the need for aligned corpora. By conducting a comprehensive evaluation of state-of-the-art language models, the study reveals significant insights into their performance on open-ended generation tasks, which are not adequately captured by traditional benchmarks. The findings highlight a trade-off between the quality and diversity of generated samples, particularly when models are fine-tuned with human feedback. This work extends the toolkit for distribution-based NLP evaluation, offering insights into the practical capabilities and challenges faced by current LLMs in generating diverse and high-quality text.
We study the statistical resilience of high-dimensional data. Our results provide estimates as to the effects of adversarial noise over the anti-concentration properties of the quadratic Radamecher chaos $\boldsymbol{\xi}^{\mathsf{T}} M \boldsymbol{\xi}$, where $M$ is a fixed (high-dimensional) matrix and $\boldsymbol{\xi}$ is a conformal Rademacher vector. Specifically, we pursue the question of how many adversarial sign-flips can $\boldsymbol{\xi}$ sustain without "inflating" $\sup_{x\in \mathbb{R}} \mathbb{P} \left\{\boldsymbol{\xi}^{\mathsf{T}} M \boldsymbol{\xi} = x\right\}$ and thus "de-smooth" the original distribution resulting in a more "grainy" and adversarially biased distribution. Our results provide lower bound estimations for the statistical resilience of the quadratic and bilinear Rademacher chaos; these are shown to be asymptotically tight across key regimes.
We propose a simple empirical representation of expectations such that: For a number of samples above a certain threshold, drawn from any probability distribution with finite fourth-order statistic, the proposed estimator outperforms the empirical average when tested against the actual population, with respect to the quadratic loss. For datasets smaller than this threshold, the result still holds, but for a class of distributions determined by their first four statistics. Our approach leverages the duality between distributionally robust and risk-averse optimization.
For a model convection-diffusion problem, we obtain new error estimates for a general upwinding finite element discretization based on bubble modification of the test space. The key analysis tool is based on finding representations of the optimal norms on the trial spaces at the continuous and discrete levels. We analyze and compare the standard linear discretization, the saddle point least square and upwinding Petrov-Galerkin methods. We conclude that the bubble upwinding Petrov-Galerkin method is the most performant discretization for the one dimensional model. Our results for the model convection-diffusion problem can be extended for creating new and efficient discretizations for the multidimensional cases.
The present article is concerned scattered data approximation for higher dimensional data sets which exhibit an anisotropic behavior in the different dimensions. Tailoring sparse polynomial interpolation to this specific situation, we derive very efficient degenerate kernel approximations which we then use in a dimension weighted fast multipole method. This dimension weighted fast multipole method enables to deal with many more dimensions than the standard black-box fast multipole method based on interpolation. A thorough analysis of the method is provided including rigorous error estimates. The accuracy and the cost of the approach are validated by extensive numerical results. As a relevant application, we apply the approach to a shape uncertainty quantification problem.
Motivated by the important statistical role of sparsity, the paper uncovers four reparametrizations for covariance matrices in which sparsity is associated with conditional independence graphs in a notional Gaussian model. The intimate relationship between the Iwasawa decomposition of the general linear group and the open cone of positive definite matrices allows a unifying perspective. Specifically, the positive definite cone can be reconstructed without loss or redundancy from the exponential map applied to four Lie subalgebras determined by the Iwasawa decomposition of the general linear group. This accords geometric interpretations to the reparametrizations and the corresponding notion of sparsity. Conditions that ensure legitimacy of the reparametrizations for statistical models are identified. While the focus of this work is on understanding population-level structure, there are strong methodological implications. In particular, since the population-level sparsity manifests in a vector space, imposition of sparsity on relevant sample quantities produces a covariance estimate that respects the positive definite cone constraint.
This paper is concerned with the problem of sampling and interpolation involving derivatives in shift-invariant spaces and the error analysis of the derivative sampling expansions for fundamentally large classes of functions. A new type of polynomials based on derivative samples is introduced, which is different from the Euler-Frobenius polynomials for the multiplicity $r>1$. A complete characterization of uniform sampling with derivatives is given using Laurent operators. The rate of approximation of a signal (not necessarily continuous) by the derivative sampling expansions in shift-invariant spaces generated by compactly supported functions is established in terms of $L^p$- average modulus of smoothness. Finally, several typical examples illustrating the various problems are discussed in detail.
This paper investigates the supercloseness of a singularly perturbed convection diffusion problem using the direct discontinuous Galerkin (DDG) method on a Shishkin mesh. The main technical difficulties lie in controlling the diffusion term inside the layer, the convection term outside the layer, and the inter element jump term caused by the discontinuity of the numerical solution. The main idea is to design a new composite interpolation, in which a global projection is used outside the layer to satisfy the interface conditions determined by the selection of numerical flux, thereby eliminating or controlling the troublesome terms on the unit interface; and inside the layer, Gau{\ss} Lobatto projection is used to improve the convergence order of the diffusion term. On the basis of that, by selecting appropriate parameters in the numerical flux, we obtain the supercloseness result of almost $k+1$ order under an energy norm. Numerical experiments support our main theoretical conclusion.
We present an information-theoretic lower bound for the problem of parameter estimation with time-uniform coverage guarantees. Via a new a reduction to sequential testing, we obtain stronger lower bounds that capture the hardness of the time-uniform setting. In the case of location model estimation, logistic regression, and exponential family models, our $\Omega(\sqrt{n^{-1}\log \log n})$ lower bound is sharp to within constant factors in typical settings.
We show that a previously introduced key exchange based on a congruence-simple semiring action is not secure by providing an attack that reveals the shared key from the distributed public information for any of such semirings