亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a general central limit theorem with simple, easy-to-check covariance-based sufficient conditions for triangular arrays of random vectors when all variables could be interdependent. The result is constructed from Stein's method, but the conditions are distinct from related work. We show that these covariance conditions nest standard assumptions studied in the literature such as $M$-dependence, mixing random fields, non-mixing autoregressive processes, and dependency graphs, which themselves need not imply each other. This permits researchers to work with high-level but intuitive conditions based on overall correlation instead of more complicated and restrictive conditions such as strong mixing in random fields that may not have any obvious micro-foundation. As examples of the implications, we show how the theorem implies asymptotic normality in estimating: treatment effects with spillovers in more settings than previously admitted, covariance matrices, processes with global dependencies such as epidemic spread and information diffusion, and spatial process with Mat\'{e}rn dependencies.

相關內容

 Processing 是一門開源編程語言和與之配套的集成開發環境(IDE)的名稱。Processing 在電子藝術和視覺設計社區被用來教授編程基礎,并運用于大量的新媒體和互動藝術作品中。

Large Language models (LLMs) possess the capability to engage In-context Learning (ICL) by leveraging a few demonstrations pertaining to a new downstream task as conditions. However, this particular learning paradigm suffers from high instability stemming from substantial variances induced by factors such as the input distribution of selected examples, their ordering, and prompt formats. In this work, we demonstrate that even when all these factors are held constant, the random selection of examples still results in high variance. Consequently, we aim to explore the informative ability of data examples by quantifying the Information Gain (IG) obtained in prediction after observing a given example candidate. Then we propose to sample those with maximum IG. Additionally, we identify the presence of template bias, which can lead to unfair evaluations of IG during the sampling process. To mitigate this bias, we introduce Calibration Before Sampling strategy. The experimental results illustrate that our proposed method can yield an average relative improvement of 14.3% across six classification tasks using three LLMs.

This work explores a multiple transmit antenna setting in a multi-access coded caching (MACC) network where each user accesses more than one cache. A MACC network has $K$ users and $K$ caches, and each user has access to $r < K$ consecutive caches in a cyclic wrap-around manner. There are $L$ antennas at the server, and each cache has a normalized size of $M/N \leq 1$. The cyclic wrap-around MACC network with a single antenna at the server has been a well-investigated topic, and several coded caching schemes and improved lower bounds on the performance are known for the same. However, this MACC network has not yet been studied under multi-antenna settings in the coded caching literature. We study the multi-antenna MACC problem and propose a solution for the same by constructing a pair of arrays called caching and delivery arrays. We present three constructions of caching and delivery arrays for different scenarios and obtain corresponding multi-antenna MACC schemes for the same. Two schemes resulting from the above constructions achieve optimal performance under uncoded placement and one-shot delivery. The optimality is shown by matching the performance of the multi-antenna MACC scheme to that of an optimal multi-antenna scheme for a dedicated cache network having an identical number of users, and each user has a normalized cache size of $rM/N$. Further, as a special case, one of the proposed schemes subsumes an existing optimal MACC scheme for the single-antenna setting.

We consider the variable selection problem for two-sample tests, aiming to select the most informative variables to distinguish samples from two groups. To solve this problem, we propose a framework based on the kernel maximum mean discrepancy (MMD). Our approach seeks a group of variables with a pre-specified size that maximizes the variance-regularized MMD statistics. This formulation also corresponds to the minimization of asymptotic type-II error while controlling type-I error, as studied in the literature. We present mixed-integer programming formulations and develop exact and approximation algorithms with performance guarantees for different choices of kernel functions. Furthermore, we provide a statistical testing power analysis of our proposed framework. Experiment results on synthetic and real datasets demonstrate the superior performance of our approach.

To ensure privacy protection and alleviate computational burden, we propose a Poisson-subsampling based distributed estimation procedure for the Cox model with massive survival datasets from multi-centered, decentralized sources. The proposed estimator is computed based on optimal subsampling probabilities that we derived and enables transmission of subsample-based summary level statistics between different storage sites with only one round of communication. For inference, the asymptotic properties of the proposed estimator were rigorously established. An extensive simulation study demonstrated that the proposed approach is effective. The methodology was applied to analyze a large dataset from the U.S. airlines.

We investigate the problem of stochastic, combinatorial multi-armed bandits where the learner only has access to bandit feedback and the reward function can be non-linear. We provide a general framework for adapting discrete offline approximation algorithms into sublinear $\alpha$-regret methods that only require bandit feedback, achieving $\mathcal{O}\left(T^\frac{2}{3}\log(T)^\frac{1}{3}\right)$ expected cumulative $\alpha$-regret dependence on the horizon $T$. The framework only requires the offline algorithms to be robust to small errors in function evaluation. The adaptation procedure does not even require explicit knowledge of the offline approximation algorithm -- the offline algorithm can be used as a black box subroutine. To demonstrate the utility of the proposed framework, the proposed framework is applied to diverse applications in submodular maximization. The new CMAB algorithms for submodular maximization with knapsack constraints outperform a full-bandit method developed for the adversarial setting in experiments with real-world data.

We present a new explicit local space-time adaptive framework to decrease the time required for monodomain simulations for cardiac electrophysiology. Based on the localized structure of the steep activation wavefront in solutions to monodomain problems, the proposed framework adopts small time steps and a tree-based adaptive mesh refinement scheme only in the regions necessary to resolve these localized structures. The time step and mesh adaptation selection process is fully controlled by a combination of local error indicators. The main contributions of this work consist in the introduction of a primal symmetric interior penalty formulation of the monodomain model and an efficient algorithmic strategy to manage local time stepping for its temporal discretization. In a first serial implementation of this framework, we report decreases in wall-clock time between 2 and 20 times with respect to an optimized implementation of a commonly used numerical scheme, showing that this framework is a promising candidate to accelerate monodomain simulations of cardiac electrophysiology.

Accelerated development of demand response service provision by the residential sector is crucial for reducing carbon-emissions in the power sector. Along with the infrastructure advancement, encouraging the end users to participate is crucial. End users highly value their privacy and control, and want to be included in the service design and decision-making process when creating the daily appliance operation schedules. Furthermore, unless they are financially or environmentally motivated, they are generally not prepared to sacrifice their comfort to help balance the power system. In this paper, we present an inverse-reinforcement-learning-based model that helps create the end users' daily appliance schedules without asking them to explicitly state their needs and wishes. By using their past consumption data, the end consumers will implicitly participate in the creation of those decisions and will thus be motivated to continue participating in the provision of demand response services.

We consider the online planning problem for a team of agents to discover and track an unknown and time-varying number of moving objects from onboard sensor measurements with uncertain measurement-object origins. Since the onboard sensors have a limited field-of-view, the usual planning strategy based solely on either tracking detected objects or discovering unseen objects is inadequate. To address this, we formulate a new information-based multi-objective multi-agent control problem, cast as a partially observable Markov decision process (POMDP). The resulting multi-agent planning problem is exponentially complex due to the unknown data association between objects and multi-sensor measurements; hence, computing an optimal control action is intractable. We prove that the proposed multi-objective value function is a monotone submodular set function, which admits low-cost suboptimal solutions via greedy search with a tight optimality bound. The resulting planning algorithm has a linear complexity in the number of objects and measurements across the sensors, and quadratic in the number of agents. We demonstrate the proposed solution via a series of numerical experiments with a real-world dataset.

The accurate and interpretable prediction of future events in time-series data often requires the capturing of representative patterns (or referred to as states) underpinning the observed data. To this end, most existing studies focus on the representation and recognition of states, but ignore the changing transitional relations among them. In this paper, we present evolutionary state graph, a dynamic graph structure designed to systematically represent the evolving relations (edges) among states (nodes) along time. We conduct analysis on the dynamic graphs constructed from the time-series data and show that changes on the graph structures (e.g., edges connecting certain state nodes) can inform the occurrences of events (i.e., time-series fluctuation). Inspired by this, we propose a novel graph neural network model, Evolutionary State Graph Network (EvoNet), to encode the evolutionary state graph for accurate and interpretable time-series event prediction. Specifically, Evolutionary State Graph Network models both the node-level (state-to-state) and graph-level (segment-to-segment) propagation, and captures the node-graph (state-to-segment) interactions over time. Experimental results based on five real-world datasets show that our approach not only achieves clear improvements compared with 11 baselines, but also provides more insights towards explaining the results of event predictions.

Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.

北京阿比特科技有限公司