亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Selecting from or ranking a set of candidates variables in terms of their capacity for predicting an outcome of interest is an important task in many scientific fields. A variety of methods for variable selection and ranking have been proposed in the literature. In practice, it can be challenging to know which method is most appropriate for a given dataset. In this article, we propose methods of comparing variable selection and ranking algorithms. We first introduce measures of the quality of variable selection and ranking algorithms. We then define estimators of our proposed measures, and establish asymptotic results for our estimators in the regime where the dimension of the covariates is fixed as the sample size grows. We use our results to conduct large-sample inference for our measures, and we propose a computationally efficient partial bootstrap procedure to potentially improve finite-sample inference. We assess the properties of our proposed methods using numerical studies, and we illustrate our methods with an analysis of data for predicting wine quality from its physicochemical properties.

相關內容

We consider a voting model, where a number of candidates need to be selected subject to certain feasibility constraints. The model generalises committee elections (where there is a single constraint on the number of candidates that need to be selected), various elections with diversity constraints, the model of public decisions (where decisions needs to be taken on a number of independent issues), and the model of collective scheduling. A critical property of voting is that it should be fair -- not only to individuals but also to groups of voters with similar opinions on the subject of the vote; in other words, the outcome of an election should proportionally reflect the voters' preferences. We formulate axioms of proportionality in this general model. Our axioms do not require predefining groups of voters; to the contrary, we ensure that the opinion of every subset of voters whose preferences are cohesive-enough are taken into account to the extent that is proportional to the size of the subset. Our axioms generalise the strongest known satisfiable axioms for the more specific models. We explain how to adapt two prominent committee election rules, Proportional Approval Voting (PAV) and Phragm\'{e}n Sequential Rule, as well as the concept of stable-priceability to our general model. The two rules satisfy our proportionality axioms if and only if the feasibility constraints are matroids.

Out-of-distribution (OOD) generalization is indispensable for learning models in the wild, where testing distribution typically unknown and different from the training. Recent methods derived from causality have shown great potential in achieving OOD generalization. However, existing methods mainly focus on the invariance property of causes, while largely overlooking the property of \textit{sufficiency} and \textit{necessity} conditions. Namely, a necessary but insufficient cause (feature) is invariant to distribution shift, yet it may not have required accuracy. By contrast, a sufficient yet unnecessary cause (feature) tends to fit specific data well but may have a risk of adapting to a new domain. To capture the information of sufficient and necessary causes, we employ a classical concept, the probability of sufficiency and necessary causes (PNS), which indicates the probability of whether one is the necessary and sufficient cause. To associate PNS with OOD generalization, we propose PNS risk and formulate an algorithm to learn representation with a high PNS value. We theoretically analyze and prove the generalizability of the PNS risk. Experiments on both synthetic and real-world benchmarks demonstrate the effectiveness of the proposed method. The details of the implementation can be found at the GitHub repository: //github.com/ymy4323460/CaSN.

Numerous approaches have attempted to interpret deep neural networks (DNNs) by attributing the prediction of DNN to its input features. One of the well-studied attribution methods is Integrated Gradients (IG). Specifically, the choice of baselines for IG is a critical consideration for generating meaningful and unbiased explanations for model predictions in different scenarios. However, current practice of exploiting a single baseline fails to fulfill this ambition, thus demanding multiple baselines. Fortunately, the inherent connection between IG and Aumann-Shapley Value forms a unique perspective to rethink the design of baselines. Under certain hypothesis, we theoretically analyse that a set of baseline aligns with the coalitions in Shapley Value. Thus, we propose a novel baseline construction method called Shapley Integrated Gradients (SIG) that searches for a set of baselines by proportional sampling to partly simulate the computation path of Shapley Value. Simulations on GridWorld show that SIG approximates the proportion of Shapley Values. Furthermore, experiments conducted on various image tasks demonstrate that compared to IG using other baseline methods, SIG exhibits an improved estimation of feature's contribution, offers more consistent explanations across diverse applications, and is generic to distinct data types or instances with insignificant computational overhead.

The remarkable successes of neural networks in a huge variety of inverse problems have fueled their adoption in disciplines ranging from medical imaging to seismic analysis over the past decade. However, the high dimensionality of such inverse problems has simultaneously left current theory, which predicts that networks should scale exponentially in the dimension of the problem, unable to explain why the seemingly small networks used in these settings work as well as they do in practice. To reduce this gap between theory and practice, we provide a general method for bounding the complexity required for a neural network to approximate a H\"older (or uniformly) continuous function defined on a high-dimensional set with a low-complexity structure. The approach is based on the observation that the existence of a Johnson-Lindenstrauss embedding $A\in\mathbb{R}^{d\times D}$ of a given high-dimensional set $S\subset\mathbb{R}^D$ into a low dimensional cube $[-M,M]^d$ implies that for any H\"older (or uniformly) continuous function $f:S\to\mathbb{R}^p$, there exists a H\"older (or uniformly) continuous function $g:[-M,M]^d\to\mathbb{R}^p$ such that $g(Ax)=f(x)$ for all $x\in S$. Hence, if one has a neural network which approximates $g:[-M,M]^d\to\mathbb{R}^p$, then a layer can be added that implements the JL embedding $A$ to obtain a neural network that approximates $f:S\to\mathbb{R}^p$. By pairing JL embedding results along with results on approximation of H\"older (or uniformly) continuous functions by neural networks, one then obtains results which bound the complexity required for a neural network to approximate H\"older (or uniformly) continuous functions on high dimensional sets. The end result is a general theoretical framework which can then be used to better explain the observed empirical successes of smaller networks in a wider variety of inverse problems than current theory allows.

This paper develops a class of potential outcomes models characterized by three main features: (i) Unobserved heterogeneity can be represented by a vector of potential outcomes and a type describing the manner in which an instrument determines the choice of treatment; (ii) The availability of an instrumental variable that is conditionally independent of unobserved heterogeneity; and (iii) The imposition of convex restrictions on the distribution of unobserved heterogeneity. The proposed class of models encompasses multiple classical and novel research designs, yet possesses a common structure that permits a unifying analysis of identification and estimation. In particular, we establish that these models share a common necessary and sufficient condition for identifying certain causal parameters. Our identification results are constructive in that they yield estimating moment conditions for the parameters of interest. Focusing on a leading special case of our framework, we further show how these estimating moment conditions may be modified to be doubly robust. The corresponding double robust estimators are shown to be asymptotically normally distributed, bootstrap based inference is shown to be asymptotically valid, and the semi-parametric efficiency bound is derived for those parameters that are root-n estimable. We illustrate the usefulness of our results for developing, identifying, and estimating causal models through an empirical evaluation of the role of mental health as a mediating variable in the Moving To Opportunity experiment.

Motivated by the growing interest in correlation-robust stochastic optimization, we investigate stochastic selection problems beyond independence. Specifically, we consider the instructive case of pairwise-independent priors and matroid constraints. We obtain essentially-optimal bounds for offline contention resolution and prophet inequalities against the almighty online adversary. The impetus for our work comes from the recent work of \cite{pi-uniform-prophet}, who derived a constant-approximation for the single-choice prophet inequality with pairwise-independent priors. For general matroids, our results are tight and largely negative. For both contention resolution and prophet inequalities, our impossibility results hold for the full linear matroid over a finite field. We explicitly construct pairwise-independent distributions which rule out an $\omega\left(\frac{1}{\rank}\right)$-balanced offline CRS and an $\omega\left(\frac{1}{\log \rank}\right)$-competitive prophet inequality. For both results, we employ a generic approach for constructing pairwise-independent random vectors -- one which unifies and generalizes existing pairwise-independence constructions from the literature on universal hash functions and pseudorandomness. Specifically, our approach is based on our observation that random linear maps turn linear independence into stochastic independence. We then examine the class of matroids which satisfy the so-called partition property -- these include most common matroids encountered in optimization. We obtain positive results for both contention resolution and prophet inequalities with pairwise-independent priors on such matroids, approximately matching the corresponding guarantees for fully independent priors.

The optimal branch number of MDS matrices makes them a preferred choice for designing diffusion layers in many block ciphers and hash functions. Consequently, various methods have been proposed for designing MDS matrices, including search and direct methods. While exhaustive search is suitable for small order MDS matrices, direct constructions are preferred for larger orders due to the vast search space involved. In the literature, there has been extensive research on the direct construction of MDS matrices using both recursive and nonrecursive methods. On the other hand, in lightweight cryptography, Near-MDS (NMDS) matrices with sub-optimal branch numbers offer a better balance between security and efficiency as a diffusion layer compared to MDS matrices. However, no direct construction method is available in the literature for constructing recursive NMDS matrices. This paper introduces some direct constructions of NMDS matrices in both nonrecursive and recursive settings. Additionally, it presents some direct constructions of nonrecursive MDS matrices from the generalized Vandermonde matrices. We propose a method for constructing involutory MDS and NMDS matrices using generalized Vandermonde matrices. Furthermore, we prove some folklore results that are used in the literature related to the NMDS code.

The resolution of near-field beamforming is an important metric to measure how effectively users with different locations can be located. This letter identifies the condition under which the resolution of near-field beamforming is not perfect. This imperfect resolution means that one user's near-field beam can be still useful to other users, which motivates the application of non-orthogonal multiple access (NOMA). Both the analytical and simulation results are developed to demonstrate that those near-field beams preconfigured for legacy users can indeed be used to effectively serve additional NOMA users, which improves the overall connectivity and system throughput.

Observations from dynamical systems often exhibit irregularities, such as censoring, where values are recorded only if they fall within a certain range. Censoring is ubiquitous in practice, due to saturating sensors, limit-of-detection effects, and image-frame effects. In light of recent developments on learning linear dynamical systems (LDSs), and on censored statistics with independent data, we revisit the decades-old problem of learning an LDS, from censored observations (Lee and Maddala (1985); Zeger and Brookmeyer (1986)). Here, the learner observes the state $x_t \in \mathbb{R}^d$ if and only if $x_t$ belongs to some set $S_t \subseteq \mathbb{R}^d$. We develop the first computationally and statistically efficient algorithm for learning the system, assuming only oracle access to the sets $S_t$. Our algorithm, Stochastic Online Newton with Switching Gradients, is a novel second-order method that builds on the Online Newton Step (ONS) of Hazan et al. (2007). Our Switching-Gradient scheme does not always use (stochastic) gradients of the function we want to optimize, which we call "censor-aware" function. Instead, in each iteration, it performs a simple test to decide whether to use the censor-aware, or another "censor-oblivious" function, for getting a stochastic gradient. In our analysis, we consider a "generic" Online Newton method, which uses arbitrary vectors instead of gradients, and we prove an error-bound for it. This can be used to appropriately design these vectors, leading to our Switching-Gradient scheme. This framework significantly deviates from the recent long line of works on censored statistics (e.g., Daskalakis et al. (2018); Kontonis et al. (2019); Daskalakis et al. (2019)), which apply Stochastic Gradient Descent (SGD), and their analysis reduces to establishing conditions for off-the-shelf SGD-bounds.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

北京阿比特科技有限公司