亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we introduce the tamed stochastic gradient descent method (TSGD) for optimization problems. Inspired by the tamed Euler scheme, which is a commonly used method within the context of stochastic differential equations, TSGD is an explicit scheme that exhibits stability properties similar to those of implicit schemes. As its computational cost is essentially equivalent to that of the well-known stochastic gradient descent method (SGD), it constitutes a very competitive alternative to such methods. We rigorously prove (optimal) sub-linear convergence of the scheme for strongly convex objective functions on an abstract Hilbert space. The analysis only requires very mild step size restrictions, which illustrates the good stability properties. The analysis is based on a priori estimates more frequently encountered in a time integration context than in optimization, and this alternative approach provides a different perspective also on the convergence of SGD. Finally, we demonstrate the usability of the scheme on a problem arising in a context of supervised learning.

相關內容

隨機梯度下降,按照數據生成分布抽取m個樣本,通過計算他們梯度的平均值來更新梯度。

The training of artificial neural networks (ANNs) with rectified linear unit (ReLU) activation via gradient descent (GD) type optimization schemes is nowadays a common industrially relevant procedure. Till this day in the scientific literature there is in general no mathematical convergence analysis which explains the numerical success of GD type optimization schemes in the training of ANNs with ReLU activation. GD type optimization schemes can be regarded as temporal discretization methods for the gradient flow (GF) differential equations associated to the considered optimization problem and, in view of this, it seems to be a natural direction of research to first aim to develop a mathematical convergence theory for time-continuous GF differential equations and, thereafter, to aim to extend such a time-continuous convergence theory to implementable time-discrete GD type optimization methods. In this article we establish two basic results for GF differential equations in the training of fully-connected feedforward ANNs with one hidden layer and ReLU activation. In the first main result of this article we establish in the training of such ANNs under the assumption that the probability distribution of the input data of the considered supervised learning problem is absolutely continuous with a bounded density function that every GF differential equation admits for every initial value a solution which is also unique among a suitable class of solutions. In the second main result of this article we prove in the training of such ANNs under the assumption that the target function and the density function of the probability distribution of the input data are piecewise polynomial that every non-divergent GF trajectory converges with an appropriate rate of convergence to a critical point and that the risk of the non-divergent GF trajectory converges with rate 1 to the risk of the critical point.

Randomized coordinate descent (RCD) is a popular optimization algorithm with wide applications in solving various machine learning problems, which motivates a lot of theoretical analysis on its convergence behavior. As a comparison, there is no work studying how the models trained by RCD would generalize to test examples. In this paper, we initialize the generalization analysis of RCD by leveraging the powerful tool of algorithmic stability. We establish argument stability bounds of RCD for both convex and strongly convex objectives, from which we develop optimal generalization bounds by showing how to early-stop the algorithm to tradeoff the estimation and optimization. Our analysis shows that RCD enjoys better stability as compared to stochastic gradient descent.

We consider the problem of minimizing a convex function that is evolving in time according to unknown and possibly stochastic dynamics. Such problems abound in the machine learning and signal processing literature, under the names of concept drift and stochastic tracking. We provide novel non-asymptotic convergence guarantees for stochastic algorithms with iterate averaging, focusing on bounds valid both in expectation and with high probability. Notably, we show that the tracking efficiency of the proximal stochastic gradient method depends only logarithmically on the initialization quality, when equipped with a step-decay schedule. The results moreover naturally extend to settings where the dynamics depend jointly on time and on the decision variable itself, as in the performative prediction framework.

In this paper, a new numerical method based on adaptive gradient descent optimizers is provided for computing the implied volatility from the Black-Scholes (B-S) option pricing model. It is shown that the new method is more accurate than the close form approximation. Compared with the Newton-Raphson method, the new method obtains a reliable rate of convergence and tends to be less sensitive to the beginning point.

This paper addresses the problem of regression to reconstruct functions, which are observed with superimposed errors at random locations. We address the problem in reproducing kernel Hilbert spaces. It is demonstrated that the estimator, which is often derived by employing Gaussian random fields, converges in the mean norm of the reproducing kernel Hilbert space to the conditional expectation and this implies local and uniform convergence of this function estimator. By preselecting the kernel, the problem does not suffer from the curse of dimensionality. The paper analyzes the statistical properties of the estimator. We derive convergence properties and provide a conservative rate of convergence for increasing sample sizes.

We study the generalization properties of the popular stochastic optimization method known as stochastic gradient descent (SGD) for optimizing general non-convex loss functions. Our main contribution is providing upper bounds on the generalization error that depend on local statistics of the stochastic gradients evaluated along the path of iterates calculated by SGD. The key factors our bounds depend on are the variance of the gradients (with respect to the data distribution) and the local smoothness of the objective function along the SGD path, and the sensitivity of the loss function to perturbations to the final output. Our key technical tool is combining the information-theoretic generalization bounds previously used for analyzing randomized variants of SGD with a perturbation analysis of the iterates.

In this paper, we propose an infinite-dimensional version of the Stein variational gradient descent (iSVGD) method for solving Bayesian inverse problems. The method can generate approximate samples from posteriors efficiently. Based on the concepts of operator-valued kernels and function-valued reproducing kernel Hilbert spaces, a rigorous definition is given for the infinite-dimensional objects, e.g., the Stein operator, which are proved to be the limit of finite-dimensional ones. Moreover, a more efficient iSVGD with preconditioning operators is constructed by generalizing the change of variables formula and introducing a regularity parameter. The proposed algorithms are applied to an inverse problem of the steady state Darcy flow equation. Numerical results confirm our theoretical findings and demonstrate the potential applications of the proposed approach in the posterior sampling of large-scale nonlinear statistical inverse problems.

Distributed Learning often suffers from Byzantine failures, and there have been a number of works studying the problem of distributed stochastic optimization under Byzantine failures, where only a portion of workers, instead of all the workers in a distributed learning system, compute stochastic gradients at each iteration. These methods, albeit workable under Byzantine failures, have the shortcomings of either a sub-optimal convergence rate or high computation cost. To this end, we propose a new Byzantine-resilient stochastic gradient descent algorithm (BrSGD for short) which is provably robust against Byzantine failures. BrSGD obtains the optimal statistical performance and efficient computation simultaneously. In particular, BrSGD can achieve an order-optimal statistical error rate for strongly convex loss functions. The computation complexity of BrSGD is O(md), where d is the model dimension and m is the number of machines. Experimental results show that BrSGD can obtain competitive results compared with non-Byzantine machines in terms of effectiveness and convergence.

We investigate how the final parameters found by stochastic gradient descent are influenced by over-parameterization. We generate families of models by increasing the number of channels in a base network, and then perform a large hyper-parameter search to study how the test error depends on learning rate, batch size, and network width. We find that the optimal SGD hyper-parameters are determined by a "normalized noise scale," which is a function of the batch size, learning rate, and initialization conditions. In the absence of batch normalization, the optimal normalized noise scale is directly proportional to width. Wider networks, with their higher optimal noise scale, also achieve higher test accuracy. These observations hold for MLPs, ConvNets, and ResNets, and for two different parameterization schemes ("Standard" and "NTK"). We observe a similar trend with batch normalization for ResNets. Surprisingly, since the largest stable learning rate is bounded, the largest batch size consistent with the optimal normalized noise scale decreases as the width increases.

We study the problem of training deep neural networks with Rectified Linear Unit (ReLU) activiation function using gradient descent and stochastic gradient descent. In particular, we study the binary classification problem and show that for a broad family of loss functions, with proper random weight initialization, both gradient descent and stochastic gradient descent can find the global minima of the training loss for an over-parameterized deep ReLU network, under mild assumption on the training data. The key idea of our proof is that Gaussian random initialization followed by (stochastic) gradient descent produces a sequence of iterates that stay inside a small perturbation region centering around the initial weights, in which the empirical loss function of deep ReLU networks enjoys nice local curvature properties that ensure the global convergence of (stochastic) gradient descent. Our theoretical results shed light on understanding the optimization of deep learning, and pave the way to study the optimization dynamics of training modern deep neural networks.

北京阿比特科技有限公司