Masked image modelling (MIM) is a powerful self-supervised representation learning paradigm, whose potential has not been widely demonstrated in medical image analysis. In this work, we show the capacity of MIM to capture rich semantic representations of Haemotoxylin & Eosin (H&E)-stained images at the nuclear level. Inspired by Bidirectional Encoder representation from Image Transformers (BEiT), we split the images into smaller patches and generate corresponding discrete visual tokens. In addition to the regular grid-based patches, typically used in visual Transformers, we introduce patches of individual cell nuclei. We propose positional encoding of the irregular distribution of these structures within an image. We pre-train the model in a self-supervised manner on H&E-stained whole-slide images of diffuse large B-cell lymphoma, where cell nuclei have been segmented. The pre-training objective is to recover the original discrete visual tokens of the masked image on the one hand, and to reconstruct the visual tokens of the masked object instances on the other. Coupling these two pre-training tasks allows us to build powerful, context-aware representations of nuclei. Our model generalizes well and can be fine-tuned on downstream classification tasks, achieving improved cell classification accuracy on PanNuke dataset by more than 5% compared to current instance segmentation methods.
We tackle the problem of learning complex, general behaviors directly in the real world. We propose an approach for robots to efficiently learn manipulation skills using only a handful of real-world interaction trajectories from many different settings. Inspired by the success of learning from large-scale datasets in the fields of computer vision and natural language, our belief is that in order to efficiently learn, a robot must be able to leverage internet-scale, human video data. Humans interact with the world in many interesting ways, which can allow a robot to not only build an understanding of useful actions and affordances but also how these actions affect the world for manipulation. Our approach builds a structured, human-centric action space grounded in visual affordances learned from human videos. Further, we train a world model on human videos and fine-tune on a small amount of robot interaction data without any task supervision. We show that this approach of affordance-space world models enables different robots to learn various manipulation skills in complex settings, in under 30 minutes of interaction. Videos can be found at //human-world-model.github.io
Federated Learning (FL) is a distributed machine learning technique that allows model training among multiple devices or organizations without sharing data. However, while FL ensures that the raw data is not directly accessible to external adversaries, adversaries can still obtain some statistical information about the data through differential attacks. Differential Privacy (DP) has been proposed, which adds noise to the model or gradients to prevent adversaries from inferring private information from the transmitted parameters. We reconsider the framework of differential privacy federated learning in resource-constrained scenarios (privacy budget and communication resources). We analyze the convergence of federated learning with differential privacy (DPFL) on resource-constrained scenarios and propose an Adaptive Local Steps Differential Privacy Federated Learning (ALS-DPFL) algorithm. We experiment our algorithm on the FashionMNIST and Cifar-10 datasets and achieve quite good performance relative to previous work.
Transfer learning is beneficial by allowing the expressive features of models pretrained on large-scale datasets to be finetuned for the target task of smaller, more domain-specific datasets. However, there is a concern that these pretrained models may come with their own biases which would propagate into the finetuned model. In this work, we investigate bias when conceptualized as both spurious correlations between the target task and a sensitive attribute as well as underrepresentation of a particular group in the dataset. Under both notions of bias, we find that (1) models finetuned on top of pretrained models can indeed inherit their biases, but (2) this bias can be corrected for through relatively minor interventions to the finetuning dataset, and often with a negligible impact to performance. Our findings imply that careful curation of the finetuning dataset is important for reducing biases on a downstream task, and doing so can even compensate for bias in the pretrained model.
Contrastive learning models have achieved great success in unsupervised visual representation learning, which maximize the similarities between feature representations of different views of the same image, while minimize the similarities between feature representations of views of different images. In text summarization, the output summary is a shorter form of the input document and they have similar meanings. In this paper, we propose a contrastive learning model for supervised abstractive text summarization, where we view a document, its gold summary and its model generated summaries as different views of the same mean representation and maximize the similarities between them during training. We improve over a strong sequence-to-sequence text generation model (i.e., BART) on three different summarization datasets. Human evaluation also shows that our model achieves better faithfulness ratings compared to its counterpart without contrastive objectives.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
Recently, contrastive learning (CL) has emerged as a successful method for unsupervised graph representation learning. Most graph CL methods first perform stochastic augmentation on the input graph to obtain two graph views and maximize the agreement of representations in the two views. Despite the prosperous development of graph CL methods, the design of graph augmentation schemes -- a crucial component in CL -- remains rarely explored. We argue that the data augmentation schemes should preserve intrinsic structures and attributes of graphs, which will force the model to learn representations that are insensitive to perturbation on unimportant nodes and edges. However, most existing methods adopt uniform data augmentation schemes, like uniformly dropping edges and uniformly shuffling features, leading to suboptimal performance. In this paper, we propose a novel graph contrastive representation learning method with adaptive augmentation that incorporates various priors for topological and semantic aspects of the graph. Specifically, on the topology level, we design augmentation schemes based on node centrality measures to highlight important connective structures. On the node attribute level, we corrupt node features by adding more noise to unimportant node features, to enforce the model to recognize underlying semantic information. We perform extensive experiments of node classification on a variety of real-world datasets. Experimental results demonstrate that our proposed method consistently outperforms existing state-of-the-art baselines and even surpasses some supervised counterparts, which validates the effectiveness of the proposed contrastive framework with adaptive augmentation.
Triple extraction is an essential task in information extraction for natural language processing and knowledge graph construction. In this paper, we revisit the end-to-end triple extraction task for sequence generation. Since generative triple extraction may struggle to capture long-term dependencies and generate unfaithful triples, we introduce a novel model, contrastive triple extraction with a generative transformer. Specifically, we introduce a single shared transformer module for encoder-decoder-based generation. To generate faithful results, we propose a novel triplet contrastive training object. Moreover, we introduce two mechanisms to further improve model performance (i.e., batch-wise dynamic attention-masking and triple-wise calibration). Experimental results on three datasets (i.e., NYT, WebNLG, and MIE) show that our approach achieves better performance than that of baselines.
It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.
Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction. However, current GNN methods are inherently flat and do not learn hierarchical representations of graphs---a limitation that is especially problematic for the task of graph classification, where the goal is to predict the label associated with an entire graph. Here we propose DiffPool, a differentiable graph pooling module that can generate hierarchical representations of graphs and can be combined with various graph neural network architectures in an end-to-end fashion. DiffPool learns a differentiable soft cluster assignment for nodes at each layer of a deep GNN, mapping nodes to a set of clusters, which then form the coarsened input for the next GNN layer. Our experimental results show that combining existing GNN methods with DiffPool yields an average improvement of 5-10% accuracy on graph classification benchmarks, compared to all existing pooling approaches, achieving a new state-of-the-art on four out of five benchmark data sets.
We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.