亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Logistic regression is a ubiquitous method for probabilistic classification. However, the effectiveness of logistic regression depends upon careful and relatively computationally expensive tuning, especially for the regularisation hyperparameter, and especially in the context of high-dimensional data. We present a prevalidated ridge regression model that closely matches logistic regression in terms of classification error and log-loss, particularly for high-dimensional data, while being significantly more computationally efficient and having effectively no hyperparameters beyond regularisation. We scale the coefficients of the model so as to minimise log-loss for a set of prevalidated predictions derived from the estimated leave-one-out cross-validation error. This exploits quantities already computed in the course of fitting the ridge regression model in order to find the scaling parameter with nominal additional computational expense.

相關內容

We consider the chance-constrained binary knapsack problem (CKP), where the item weights are independent and normally distributed. We introduce a continuous relaxation for the CKP, represented as a non-convex optimization problem, which we call the non-convex relaxation. A comparative study shows that the non-convex relaxation provides an upper bound for the CKP, at least as tight as those obtained from other continuous relaxations for the CKP. Furthermore, the quality of the obtained upper bound is guaranteed to be at most twice the optimal objective value of the CKP. Despite its non-convex nature, we show that the non-convex relaxation can be solved in polynomial time. Subsequently, we proposed a polynomial-time 1/2-approximation algorithm for the CKP based on this relaxation, providing a lower bound for the CKP. Computational test results demonstrate that the non-convex relaxation and the proposed approximation algorithm yields tight lower and upper bounds for the CKP within a short computation time, ensuring the quality of the obtained bounds.

In decision-making, maxitive functions are used for worst-case and best-case evaluations. Maxitivity gives rise to a rich structure that is well-studied in the context of the pointwise order. In this article, we investigate maxitivity with respect to general preorders and provide a representation theorem for such functionals. The results are illustrated for different stochastic orders in the literature, including the usual stochastic order, the increasing convex/concave order, and the dispersive order.

The consistency of the maximum likelihood estimator for mixtures of elliptically-symmetric distributions for estimating its population version is shown, where the underlying distribution $P$ is nonparametric and does not necessarily belong to the class of mixtures on which the estimator is based. In a situation where $P$ is a mixture of well enough separated but nonparametric distributions it is shown that the components of the population version of the estimator correspond to the well separated components of $P$. This provides some theoretical justification for the use of such estimators for cluster analysis in case that $P$ has well separated subpopulations even if these subpopulations differ from what the mixture model assumes.

The sparsity-ranked lasso (SRL) has been developed for model selection and estimation in the presence of interactions and polynomials. The main tenet of the SRL is that an algorithm should be more skeptical of higher-order polynomials and interactions *a priori* compared to main effects, and hence the inclusion of these more complex terms should require a higher level of evidence. In time series, the same idea of ranked prior skepticism can be applied to the possibly seasonal autoregressive (AR) structure of the series during the model fitting process, becoming especially useful in settings with uncertain or multiple modes of seasonality. The SRL can naturally incorporate exogenous variables, with streamlined options for inference and/or feature selection. The fitting process is quick even for large series with a high-dimensional feature set. In this work, we discuss both the formulation of this procedure and the software we have developed for its implementation via the **fastTS** R package. We explore the performance of our SRL-based approach in a novel application involving the autoregressive modeling of hourly emergency room arrivals at the University of Iowa Hospitals and Clinics. We find that the SRL is considerably faster than its competitors, while producing more accurate predictions.

To date, most methods for simulating conditioned diffusions are limited to the Euclidean setting. The conditioned process can be constructed using a change of measure known as Doob's $h$-transform. The specific type of conditioning depends on a function $h$ which is typically unknown in closed form. To resolve this, we extend the notion of guided processes to a manifold $M$, where one replaces $h$ by a function based on the heat kernel on $M$. We consider the case of a Brownian motion with drift, constructed using the frame bundle of $M$, conditioned to hit a point $x_T$ at time $T$. We prove equivalence of the laws of the conditioned process and the guided process with a tractable Radon-Nikodym derivative. Subsequently, we show how one can obtain guided processes on any manifold $N$ that is diffeomorphic to $M$ without assuming knowledge of the heat kernel on $N$. We illustrate our results with numerical simulations and an example of parameter estimation where a diffusion process on the torus is observed discretely in time.

A numerical framework for simulating progressive failure under high-cycle fatigue loading is validated against experiments of composite quasi-isotropic open-hole laminates. Transverse matrix cracking and delamination are modeled with a mixed-mode fatigue cohesive zone model, covering crack initiation and propagation. Furthermore, XFEM is used for simulating transverse matrix cracks and splits at arbitrary locations. An adaptive cycle jump approach is employed for efficiently simulating high-cycle fatigue while accounting for local stress ratio variations in the presence of thermal residual stresses. The cycle jump scheme is integrated in the XFEM framework, where the local stress ratio is used to determine the insertion of cracks and to propagate fatigue damage. The fatigue cohesive zone model is based on S-N curves and requires static material properties and only a few fatigue parameters, calibrated on simple fracture testing specimens. The simulations demonstrate a good correspondence with experiments in terms of fatigue life and damage evolution.

Multi-contrast (MC) Magnetic Resonance Imaging (MRI) reconstruction aims to incorporate a reference image of auxiliary modality to guide the reconstruction process of the target modality. Known MC reconstruction methods perform well with a fully sampled reference image, but usually exhibit inferior performance, compared to single-contrast (SC) methods, when the reference image is missing or of low quality. To address this issue, we propose DuDoUniNeXt, a unified dual-domain MRI reconstruction network that can accommodate to scenarios involving absent, low-quality, and high-quality reference images. DuDoUniNeXt adopts a hybrid backbone that combines CNN and ViT, enabling specific adjustment of image domain and k-space reconstruction. Specifically, an adaptive coarse-to-fine feature fusion module (AdaC2F) is devised to dynamically process the information from reference images of varying qualities. Besides, a partially shared shallow feature extractor (PaSS) is proposed, which uses shared and distinct parameters to handle consistent and discrepancy information among contrasts. Experimental results demonstrate that the proposed model surpasses state-of-the-art SC and MC models significantly. Ablation studies show the effectiveness of the proposed hybrid backbone, AdaC2F, PaSS, and the dual-domain unified learning scheme.

Robust Markov Decision Processes (RMDPs) are a widely used framework for sequential decision-making under parameter uncertainty. RMDPs have been extensively studied when the objective is to maximize the discounted return, but little is known for average optimality (optimizing the long-run average of the rewards obtained over time) and Blackwell optimality (remaining discount optimal for all discount factors sufficiently close to 1). In this paper, we prove several foundational results for RMDPs beyond the discounted return. We show that average optimal policies can be chosen stationary and deterministic for sa-rectangular RMDPs but, perhaps surprisingly, that history-dependent (Markovian) policies strictly outperform stationary policies for average optimality in s-rectangular RMDPs. We also study Blackwell optimality for sa-rectangular RMDPs, where we show that {\em approximate} Blackwell optimal policies always exist, although Blackwell optimal policies may not exist. We also provide a sufficient condition for their existence, which encompasses virtually any examples from the literature. We then discuss the connection between average and Blackwell optimality, and we describe several algorithms to compute the optimal average return. Interestingly, our approach leverages the connections between RMDPs and stochastic games.

We present a new methodology for decomposing flows with multiple transports that further extends the shifted proper orthogonal decomposition (sPOD). The sPOD tries to approximate transport-dominated flows by a sum of co-moving data fields. The proposed methods stem from sPOD but optimize the co-moving fields directly and penalize their nuclear norm to promote low rank of the individual data in the decomposition. Furthermore, we add a robustness term to the decomposition that can deal with interpolation error and data noises. Leveraging tools from convex optimization, we derive three proximal algorithms to solve the decomposition problem. We report a numerical comparison with existing methods against synthetic data benchmarks and then show the separation ability of our methods on 1D and 2D incompressible and reactive flows. The resulting methodology is the basis of a new analysis paradigm that results in the same interpretability as the POD for the individual co-moving fields.

The minimum covariance determinant (MCD) estimator is a popular method for robustly estimating the mean and covariance of multivariate data. We extend the MCD to the setting where the observations are matrices rather than vectors and introduce the matrix minimum covariance determinant (MMCD) estimators for robust parameter estimation. These estimators hold equivariance properties, achieve a high breakdown point, and are consistent under elliptical matrix-variate distributions. We have also developed an efficient algorithm with convergence guarantees to compute the MMCD estimators. Using the MMCD estimators, we can compute robust Mahalanobis distances that can be used for outlier detection. Those distances can be decomposed into outlyingness contributions from each cell, row, or column of a matrix-variate observation using Shapley values, a concept for outlier explanation recently introduced in the multivariate setting. Simulations and examples reveal the excellent properties and usefulness of the robust estimators.

北京阿比特科技有限公司