This paper begins with a description of methods for estimating probability density functions for images that reflects the observation that such data is usually constrained to lie in restricted regions of the high-dimensional image space - not every pattern of pixels is an image. It is common to say that images lie on a lower-dimensional manifold in the high-dimensional space. However, although images may lie on such lower-dimensional manifolds, it is not the case that all points on the manifold have an equal probability of being images. Images are unevenly distributed on the manifold, and our task is to devise ways to model this distribution as a probability distribution. In pursuing this goal, we consider generative models that are popular in AI and computer vision community. For our purposes, generative/probabilistic models should have the properties of 1) sample generation: it should be possible to sample from this distribution according to the modelled density function, and 2) probability computation: given a previously unseen sample from the dataset of interest, one should be able to compute the probability of the sample, at least up to a normalising constant. To this end, we investigate the use of methods such as normalising flow and diffusion models. We then show that such probabilistic descriptions can be used to construct defences against adversarial attacks. In addition to describing the manifold in terms of density, we also consider how semantic interpretations can be used to describe points on the manifold. To this end, we consider an emergent language framework which makes use of variational encoders to produce a disentangled representation of points that reside on a given manifold. Trajectories between points on a manifold can then be described in terms of evolving semantic descriptions.
Clustering a graph when the clusters can overlap can be seen from three different angles: We may look for cliques that cover the edges of the graph, we may look to add or delete few edges to uncover the cluster structure, or we may split vertices to separate the clusters from each other. Herein, splitting a vertex $v$ means to remove it and to add two new copies of $v$ and to make each previous neighbor of $v$ adjacent with at least one of the copies. In this work, we look at the underlying computational problems regarding the three angles to overlapping clusterings, in particular when the overlap is small. We first show that the above-mentioned covering problem, which also has been independently studied in different contexts, is NP-hard. Based on a previous so-called critical-clique lemma, we leverage our hardness result to show that Cluster Editing with Vertex Splitting is also NP-hard, resolving an open question by Abu-Khzam et al. [ISCO 2018]. We notice, however, that the proof of the critical-clique lemma is flawed and we give a counterexample. Our hardness result also holds under a version of the critical-clique lemma to which we currently do not have a counterexample. On the positive side, we show that Cluster Vertex Splitting admits a vertex-linear problem kernel with respect to the number of allowed splits.
The task of object segmentation in videos is usually accomplished by processing appearance and motion information separately using standard 2D convolutional networks, followed by a learned fusion of the two sources of information. On the other hand, 3D convolutional networks have been successfully applied for video classification tasks, but have not been leveraged as effectively to problems involving dense per-pixel interpretation of videos compared to their 2D convolutional counterparts and lag behind the aforementioned networks in terms of performance. In this work, we show that 3D CNNs can be effectively applied to dense video prediction tasks such as salient object segmentation. We propose a simple yet effective encoder-decoder network architecture consisting entirely of 3D convolutions that can be trained end-to-end using a standard cross-entropy loss. To this end, we leverage an efficient 3D encoder, and propose a 3D decoder architecture, that comprises novel 3D Global Convolution layers and 3D Refinement modules. Our approach outperforms existing state-of-the-arts by a large margin on the DAVIS'16 Unsupervised, FBMS and ViSal dataset benchmarks in addition to being faster, thus showing that our architecture can efficiently learn expressive spatio-temporal features and produce high quality video segmentation masks. We have made our code and trained models publicly available at //github.com/sabarim/3DC-Seg.
Model extraction emerges as a critical security threat with attack vectors exploiting both algorithmic and implementation-based approaches. The main goal of an attacker is to steal as much information as possible about a protected victim model, so that he can mimic it with a substitute model, even with a limited access to similar training data. Recently, physical attacks such as fault injection have shown worrying efficiency against the integrity and confidentiality of embedded models. We focus on embedded deep neural network models on 32-bit microcontrollers, a widespread family of hardware platforms in IoT, and the use of a standard fault injection strategy - Safe Error Attack (SEA) - to perform a model extraction attack with an adversary having a limited access to training data. Since the attack strongly depends on the input queries, we propose a black-box approach to craft a successful attack set. For a classical convolutional neural network, we successfully recover at least 90% of the most significant bits with about 1500 crafted inputs. These information enable to efficiently train a substitute model, with only 8% of the training dataset, that reaches high fidelity and near identical accuracy level than the victim model.
Data catalogs play a crucial role in modern data-driven organizations by facilitating the discovery, understanding, and utilization of diverse data assets. However, ensuring their quality and reliability is complex, especially in open and large-scale data environments. This paper proposes a framework to automatically determine the quality of open data catalogs, addressing the need for efficient and reliable quality assessment mechanisms. Our framework can analyze various core quality dimensions, such as accuracy, completeness, consistency, scalability, and timeliness, offer several alternatives for the assessment of compatibility and similarity across such catalogs as well as the implementation of a set of non-core quality dimensions such as provenance, readability, and licensing. The goal is to empower data-driven organizations to make informed decisions based on trustworthy and well-curated data assets. The source code that illustrates our approach can be downloaded from //www.github.com/jorge-martinez-gil/dataq/.
Multi-modal Large Language Model (MLLM) refers to a model expanded from a Large Language Model (LLM) that possesses the capability to handle and infer multi-modal data. Current MLLMs typically begin by using LLMs to decompose tasks into multiple subtasks, then employing individual pre-trained models to complete specific subtasks, and ultimately utilizing LLMs to integrate the results of each subtasks to obtain the results of the task. In real-world scenarios, when dealing with large projects, it is common practice to break down the project into smaller sub-projects, with different teams providing corresponding solutions or results. The project owner then decides which solution or result to use, ensuring the best possible outcome for each subtask and, consequently, for the entire project. Inspired by this, this study considers selecting multiple pre-trained models to complete the same subtask. By combining the results from multiple pre-trained models, the optimal subtask result is obtained, enhancing the performance of the MLLM. Specifically, this study first selects multiple pre-trained models focused on the same subtask based on distinct evaluation approaches, and then invokes these models in parallel to process input data and generate corresponding subtask results. Finally, the results from multiple pre-trained models for the same subtask are compared using the LLM, and the best result is chosen as the outcome for that subtask. Extensive experiments are conducted in this study using GPT-4 annotated datasets and human-annotated datasets. The results of various evaluation metrics adequately demonstrate the effectiveness of the proposed approach in this paper.
This paper presents efficient algorithms, designed to leverage SIMD for performing Montgomery reductions and additions on integers larger than 512 bits. The existing algorithms encounter inefficiencies when parallelized using SIMD due to extensive dependencies in both operations, particularly noticeable in costly operations like ARM's SVE. To mitigate this problem, a novel addition algorithm is introduced that simulates the addition of large integers using a smaller addition, quickly producing the same set of carries. These carries are then utilized to perform parallel additions on large integers. For Montgomery reductions, serial multiplications are replaced with precomputations that can be effectively calculated using SIMD extensions. Experimental evidence demonstrates that these proposed algorithms substantially enhance the performance of state-of-the-art implementations of several post-quantum cryptography algorithms. Notably, they deliver a 30% speed-up from the latest CTIDH implementation, an 11% speed-up from the latest CSIDH implementation in AVX-512 processors, and a 7% speed-up from Microsoft's standard PQCrypto-SIDH for SIKEp503 on A64FX.
We consider a statistical problem to estimate variables (effects) that are associated with the edges of a complete bipartite graph $K_{v_1, v_2}=(V_1, V_2 \, ; E)$. Each data is obtained as a sum of selected effects, a subset of $E$. In order to estimate efficiently, we propose a design called Spanning Bipartite Block Design (SBBD). For SBBDs such that the effects are estimable, we proved that the estimators have the same variance (variance balanced). If each block (a subgraph of $K_{v_1, v_2}$) of SBBD is a semi-regular or a regular bipartite graph, we show that the design is A-optimum. We also show a construction of SBBD using an ($r,\lambda$)-design and an ordered design. A BIBD with prime power blocks gives an A-optimum semi-regular or regular SBBD. At last, we mention that this SBBD is able to use for deep learning.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.
Image segmentation is an important component of many image understanding systems. It aims to group pixels in a spatially and perceptually coherent manner. Typically, these algorithms have a collection of parameters that control the degree of over-segmentation produced. It still remains a challenge to properly select such parameters for human-like perceptual grouping. In this work, we exploit the diversity of segments produced by different choices of parameters. We scan the segmentation parameter space and generate a collection of image segmentation hypotheses (from highly over-segmented to under-segmented). These are fed into a cost minimization framework that produces the final segmentation by selecting segments that: (1) better describe the natural contours of the image, and (2) are more stable and persistent among all the segmentation hypotheses. We compare our algorithm's performance with state-of-the-art algorithms, showing that we can achieve improved results. We also show that our framework is robust to the choice of segmentation kernel that produces the initial set of hypotheses.
While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.