亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce NetQASM, a low-level instruction set architecture for quantum internet applications. NetQASM is a universal, platform-independent and extendable instruction set with support for local quantum gates, powerful classical logic and quantum networking operations for remote entanglement generation. Furthermore, NetQASM allows for close integration of classical logic and communication at the application layer with quantum operations at the physical layer. We implement NetQASM in a series of tools to write, parse, encode and run NetQASM code, which are available online. Our tools include a higher-level SDK in Python, which allows an easy way of programming applications for a quantum internet. Our SDK can be used at home by making use of our existing quantum simulators, NetSquid and SimulaQron, and will also provide a public interface to hardware released on a future iteration of Quantum Network Explorer.

相關內容

這個新版本的工具會議系列恢復了從1989年到2012年的50個會議的傳統。工具最初是“面向對象語言和系統的技術”,后來發展到包括軟件技術的所有創新方面。今天許多最重要的軟件概念都是在這里首次引入的。2019年TOOLS 50+1在俄羅斯喀山附近舉行,以同樣的創新精神、對所有與軟件相關的事物的熱情、科學穩健性和行業適用性的結合以及歡迎該領域所有趨勢和社區的開放態度,延續了該系列。 官網鏈接: · 成比例 · 評論員 · 編程語言 · 軟件工程 ·
2022 年 1 月 21 日

As quantum programming evolves, more and more quantum programming languages are being developed. As a result, debugging and testing quantum programs have become increasingly important. While bug fixing in classical programs has come a long way, there is a lack of research in quantum programs. To this end, this paper presents a comprehensive study on bug fixing in quantum programs. We collect and investigate 96 real-world bugs and their fixes from four popular quantum programming languages Qiskit, Cirq, Q#, and ProjectQ). Our study shows that a high proportion of bugs in quantum programs are quantum-specific bugs (over 80%), which requires further research in the bug fixing domain. We also summarize and extend the bug patterns in quantum programs and subdivide the most critical part, math-related bugs, to make it more applicable to the study of quantum programs. Our findings summarize the characteristics of bugs in quantum programs and provide a basis for studying testing and debugging quantum programs.

Quantum machine learning has emerged as a potential practical application of near-term quantum devices. In this work, we study a two-layer hybrid classical-quantum classifier in which a first layer of quantum stochastic neurons implementing generalized linear models (QGLMs) is followed by a second classical combining layer. The input to the first, hidden, layer is obtained via amplitude encoding in order to leverage the exponential size of the fan-in of the quantum neurons in the number of qubits per neuron. To facilitate implementation of the QGLMs, all weights and activations are binary. While the state of the art on training strategies for this class of models is limited to exhaustive search and single-neuron perceptron-like bit-flip strategies, this letter introduces a stochastic variational optimization approach that enables the joint training of quantum and classical layers via stochastic gradient descent. Experiments show the advantages of the approach for a variety of activation functions implemented by QGLM neurons.

This is a set of lecture notes used in a graduate topic class in applied mathematics called ``Quantum Algorithms for Scientific Computation'' at the Department of Mathematics, UC Berkeley during the fall semester of 2021. These lecture notes focus only on quantum algorithms closely related to scientific computation, and in particular, matrix computation. The main purpose of the lecture notes is to introduce quantum phase estimation (QPE) and ``post-QPE'' methods such as block encoding, quantum signal processing, and quantum singular value transformation, and to demonstrate their applications in solving eigenvalue problems, linear systems of equations, and differential equations. The intended audience is the broad computational science and engineering (CSE) community interested in using fault-tolerant quantum computers to solve challenging scientific computing problems.

Beyond Visual Line of Sight operation enables drones to surpass the limits imposed by the reach and constraints of their operator's eyes. It extends their range and, as such, productivity, and profitability. Drones operating BVLOS include a variety of highly sensitive assets and information that could be subject to unintentional or intentional security vulnerabilities. As a solution, blockchain-based services could enable secure and trustworthy exchange and storage of related data. They also allow for traceability of exchanges and perform synchronization with other nodes in the network. However, most of the blockchain-based approaches focus on the network and the protocol aspects of drone systems. Few studies focus on the architectural level of on-chip compute platforms of drones. Based on this observation, the contribution of this paper is twofold: (1) a generic blockchain-based service architecture for on-chip compute platforms of drones, and (2) a concrete example realization of the proposed generic architecture.

Quantum error mitigation (QEM) is a class of promising techniques for reducing the computational error of variational quantum algorithms. In general, the computational error reduction comes at the cost of a sampling overhead due to the variance-boosting effect caused by the channel inversion operation, which ultimately limits the applicability of QEM. Existing sampling overhead analysis of QEM typically assumes exact channel inversion, which is unrealistic in practical scenarios. In this treatise, we consider a practical channel inversion strategy based on Monte Carlo sampling, which introduces additional computational error that in turn may be eliminated at the cost of an extra sampling overhead. In particular, we show that when the computational error is small compared to the dynamic range of the error-free results, it scales with the square root of the number of gates. By contrast, the error exhibits a linear scaling with the number of gates in the absence of QEM under the same assumptions. Hence, the error scaling of QEM remains to be preferable even without the extra sampling overhead. Our analytical results are accompanied by numerical examples.

We prove a lower bound on the probability of Shor's order-finding algorithm successfully recovering the order $r$ in a single run. The bound implies that by performing two limited searches in the classical post-processing part of the algorithm, a high success probability can be guaranteed, for any $r$, without re-running the quantum part or increasing the exponent length compared to Shor. Asymptotically, in the limit as $r$ tends to infinity, the probability of successfully recovering $r$ in a single run tends to one. Already for moderate $r$, a high success probability exceeding e.g. $1 - 10^{-4}$ can be guaranteed. As corollaries, we prove analogous results for the probability of completely factoring any integer $N$ in a single run of the order-finding algorithm.

Graph Neural Networks (GNN) come in many flavors, but should always be either invariant (permutation of the nodes of the input graph does not affect the output) or equivariant (permutation of the input permutes the output). In this paper, we consider a specific class of invariant and equivariant networks, for which we prove new universality theorems. More precisely, we consider networks with a single hidden layer, obtained by summing channels formed by applying an equivariant linear operator, a pointwise non-linearity and either an invariant or equivariant linear operator. Recently, Maron et al. (2019) showed that by allowing higher-order tensorization inside the network, universal invariant GNNs can be obtained. As a first contribution, we propose an alternative proof of this result, which relies on the Stone-Weierstrass theorem for algebra of real-valued functions. Our main contribution is then an extension of this result to the equivariant case, which appears in many practical applications but has been less studied from a theoretical point of view. The proof relies on a new generalized Stone-Weierstrass theorem for algebra of equivariant functions, which is of independent interest. Finally, unlike many previous settings that consider a fixed number of nodes, our results show that a GNN defined by a single set of parameters can approximate uniformly well a function defined on graphs of varying size.

Recurrent neural networks (RNNs) provide state-of-the-art performance in processing sequential data but are memory intensive to train, limiting the flexibility of RNN models which can be trained. Reversible RNNs---RNNs for which the hidden-to-hidden transition can be reversed---offer a path to reduce the memory requirements of training, as hidden states need not be stored and instead can be recomputed during backpropagation. We first show that perfectly reversible RNNs, which require no storage of the hidden activations, are fundamentally limited because they cannot forget information from their hidden state. We then provide a scheme for storing a small number of bits in order to allow perfect reversal with forgetting. Our method achieves comparable performance to traditional models while reducing the activation memory cost by a factor of 10--15. We extend our technique to attention-based sequence-to-sequence models, where it maintains performance while reducing activation memory cost by a factor of 5--10 in the encoder, and a factor of 10--15 in the decoder.

Currently, the neural network architecture design is mostly guided by the \emph{indirect} metric of computation complexity, i.e., FLOPs. However, the \emph{direct} metric, e.g., speed, also depends on the other factors such as memory access cost and platform characterics. Thus, this work proposes to evaluate the direct metric on the target platform, beyond only considering FLOPs. Based on a series of controlled experiments, this work derives several practical \emph{guidelines} for efficient network design. Accordingly, a new architecture is presented, called \emph{ShuffleNet V2}. Comprehensive ablation experiments verify that our model is the state-of-the-art in terms of speed and accuracy tradeoff.

Quantum machine learning is expected to be one of the first potential general-purpose applications of near-term quantum devices. A major recent breakthrough in classical machine learning is the notion of generative adversarial training, where the gradients of a discriminator model are used to train a separate generative model. In this work and a companion paper, we extend adversarial training to the quantum domain and show how to construct generative adversarial networks using quantum circuits. Furthermore, we also show how to compute gradients -- a key element in generative adversarial network training -- using another quantum circuit. We give an example of a simple practical circuit ansatz to parametrize quantum machine learning models and perform a simple numerical experiment to demonstrate that quantum generative adversarial networks can be trained successfully.

北京阿比特科技有限公司