In the recent years, many methods demonstrated the ability of neural networks to learn depth and pose changes in a sequence of images, using only self-supervision as the training signal. Whilst the networks achieve good performance, the often over-looked detail is that due to the inherent ambiguity of monocular vision they predict depth up to an unknown scaling factor. The scaling factor is then typically obtained from the LiDAR ground truth at test time, which severely limits practical applications of these methods. In this paper, we show that incorporating prior information about the camera configuration and the environment, we can remove the scale ambiguity and predict depth directly, still using the self-supervised formulation and not relying on any additional sensors.
The Robotics community has started to heavily rely on increasingly realistic 3D simulators for large-scale training of robots on massive amounts of data. But once robots are deployed in the real world, the simulation gap, as well as changes in the real world (e.g. lights, objects displacements) lead to errors. In this paper, we introduce Sim2RealViz, a visual analytics tool to assist experts in understanding and reducing this gap for robot ego-pose estimation tasks, i.e. the estimation of a robot's position using trained models. Sim2RealViz displays details of a given model and the performance of its instances in both simulation and real-world. Experts can identify environment differences that impact model predictions at a given location and explore through direct interactions with the model hypothesis to fix it. We detail the design of the tool, and case studies related to the exploit of the regression to the mean bias and how it can be addressed, and how models are perturbed by the vanish of landmarks such as bikes.
Existing 3D human pose estimation algorithms trained on distortion-free datasets suffer performance drop when applied to new scenarios with a specific camera distortion. In this paper, we propose a simple yet effective model for 3D human pose estimation in video that can quickly adapt to any distortion environment by utilizing MAML, a representative optimization-based meta-learning algorithm. We consider a sequence of 2D keypoints in a particular distortion as a single task of MAML. However, due to the absence of a large-scale dataset in a distorted environment, we propose an efficient method to generate synthetic distorted data from undistorted 2D keypoints. For the evaluation, we assume two practical testing situations depending on whether a motion capture sensor is available or not. In particular, we propose Inference Stage Optimization using bone-length symmetry and consistency. Extensive evaluation shows that our proposed method successfully adapts to various degrees of distortion in the testing phase and outperforms the existing state-of-the-art approaches. The proposed method is useful in practice because it does not require camera calibration and additional computations in a testing set-up.
Remarkable results have been achieved by DCNN based self-supervised depth estimation approaches. However, most of these approaches can only handle either day-time or night-time images, while their performance degrades for all-day images due to large domain shift and the variation of illumination between day and night images. To relieve these limitations, we propose a domain-separated network for self-supervised depth estimation of all-day images. Specifically, to relieve the negative influence of disturbing terms (illumination, etc.), we partition the information of day and night image pairs into two complementary sub-spaces: private and invariant domains, where the former contains the unique information (illumination, etc.) of day and night images and the latter contains essential shared information (texture, etc.). Meanwhile, to guarantee that the day and night images contain the same information, the domain-separated network takes the day-time images and corresponding night-time images (generated by GAN) as input, and the private and invariant feature extractors are learned by orthogonality and similarity loss, where the domain gap can be alleviated, thus better depth maps can be expected. Meanwhile, the reconstruction and photometric losses are utilized to estimate complementary information and depth maps effectively. Experimental results demonstrate that our approach achieves state-of-the-art depth estimation results for all-day images on the challenging Oxford RobotCar dataset, proving the superiority of our proposed approach.
Human pose estimation aims to locate the human body parts and build human body representation (e.g., body skeleton) from input data such as images and videos. It has drawn increasing attention during the past decade and has been utilized in a wide range of applications including human-computer interaction, motion analysis, augmented reality, and virtual reality. Although the recently developed deep learning-based solutions have achieved high performance in human pose estimation, there still remain challenges due to insufficient training data, depth ambiguities, and occlusions. The goal of this survey paper is to provide a comprehensive review of recent deep learning-based solutions for both 2D and 3D pose estimation via a systematic analysis and comparison of these solutions based on their input data and inference procedures. More than 240 research papers since 2014 are covered in this survey. Furthermore, 2D and 3D human pose estimation datasets and evaluation metrics are included. Quantitative performance comparisons of the reviewed methods on popular datasets are summarized and discussed. Finally, the challenges involved, applications, and future research directions are concluded. We also provide a regularly updated project page on: \url{//github.com/zczcwh/DL-HPE}
In the last decade, numerous supervised deep learning approaches requiring large amounts of labeled data have been proposed for visual-inertial odometry (VIO) and depth map estimation. To overcome the data limitation, self-supervised learning has emerged as a promising alternative, exploiting constraints such as geometric and photometric consistency in the scene. In this study, we introduce a novel self-supervised deep learning-based VIO and depth map recovery approach (SelfVIO) using adversarial training and self-adaptive visual-inertial sensor fusion. SelfVIO learns to jointly estimate 6 degrees-of-freedom (6-DoF) ego-motion and a depth map of the scene from unlabeled monocular RGB image sequences and inertial measurement unit (IMU) readings. The proposed approach is able to perform VIO without the need for IMU intrinsic parameters and/or the extrinsic calibration between the IMU and the camera. estimation and single-view depth recovery network. We provide comprehensive quantitative and qualitative evaluations of the proposed framework comparing its performance with state-of-the-art VIO, VO, and visual simultaneous localization and mapping (VSLAM) approaches on the KITTI, EuRoC and Cityscapes datasets. Detailed comparisons prove that SelfVIO outperforms state-of-the-art VIO approaches in terms of pose estimation and depth recovery, making it a promising approach among existing methods in the literature.
Outlier detection is an important topic in machine learning and has been used in a wide range of applications. In this paper, we approach outlier detection as a binary-classification issue by sampling potential outliers from a uniform reference distribution. However, due to the sparsity of data in high-dimensional space, a limited number of potential outliers may fail to provide sufficient information to assist the classifier in describing a boundary that can separate outliers from normal data effectively. To address this, we propose a novel Single-Objective Generative Adversarial Active Learning (SO-GAAL) method for outlier detection, which can directly generate informative potential outliers based on the mini-max game between a generator and a discriminator. Moreover, to prevent the generator from falling into the mode collapsing problem, the stop node of training should be determined when SO-GAAL is able to provide sufficient information. But without any prior information, it is extremely difficult for SO-GAAL. Therefore, we expand the network structure of SO-GAAL from a single generator to multiple generators with different objectives (MO-GAAL), which can generate a reasonable reference distribution for the whole dataset. We empirically compare the proposed approach with several state-of-the-art outlier detection methods on both synthetic and real-world datasets. The results show that MO-GAAL outperforms its competitors in the majority of cases, especially for datasets with various cluster types or high irrelevant variable ratio.
We develop a system for modeling hand-object interactions in 3D from RGB images that show a hand which is holding a novel object from a known category. We design a Convolutional Neural Network (CNN) for Hand-held Object Pose and Shape estimation called HOPS-Net and utilize prior work to estimate the hand pose and configuration. We leverage the insight that information about the hand facilitates object pose and shape estimation by incorporating the hand into both training and inference of the object pose and shape as well as the refinement of the estimated pose. The network is trained on a large synthetic dataset of objects in interaction with a human hand. To bridge the gap between real and synthetic images, we employ an image-to-image translation model (Augmented CycleGAN) that generates realistically textured objects given a synthetic rendering. This provides a scalable way of generating annotated data for training HOPS-Net. Our quantitative experiments show that even noisy hand parameters significantly help object pose and shape estimation. The qualitative experiments show results of pose and shape estimation of objects held by a hand "in the wild".
This work addresses a novel and challenging problem of estimating the full 3D hand shape and pose from a single RGB image. Most current methods in 3D hand analysis from monocular RGB images only focus on estimating the 3D locations of hand keypoints, which cannot fully express the 3D shape of hand. In contrast, we propose a Graph Convolutional Neural Network (Graph CNN) based method to reconstruct a full 3D mesh of hand surface that contains richer information of both 3D hand shape and pose. To train networks with full supervision, we create a large-scale synthetic dataset containing both ground truth 3D meshes and 3D poses. When fine-tuning the networks on real-world datasets without 3D ground truth, we propose a weakly-supervised approach by leveraging the depth map as a weak supervision in training. Through extensive evaluations on our proposed new datasets and two public datasets, we show that our proposed method can produce accurate and reasonable 3D hand mesh, and can achieve superior 3D hand pose estimation accuracy when compared with state-of-the-art methods.
3D vehicle detection and tracking from a monocular camera requires detecting and associating vehicles, and estimating their locations and extents together. It is challenging because vehicles are in constant motion and it is practically impossible to recover the 3D positions from a single image. In this paper, we propose a novel framework that jointly detects and tracks 3D vehicle bounding boxes. Our approach leverages 3D pose estimation to learn 2D patch association overtime and uses temporal information from tracking to obtain stable 3D estimation. Our method also leverages 3D box depth ordering and motion to link together the tracks of occluded objects. We train our system on realistic 3D virtual environments, collecting a new diverse, large-scale and densely annotated dataset with accurate 3D trajectory annotations. Our experiments demonstrate that our method benefits from inferring 3D for both data association and tracking robustness, leveraging our dynamic 3D tracking dataset.
Recent techniques in self-supervised monocular depth estimation are approaching the performance of supervised methods, but operate in low resolution only. We show that high resolution is key towards high-fidelity self-supervised monocular depth prediction. Inspired by recent deep learning methods for Single-Image Super-Resolution, we propose a sub-pixel convolutional layer extension for depth super-resolution that accurately synthesizes high-resolution disparities from their corresponding low-resolution convolutional features. In addition, we introduce a differentiable flip-augmentation layer that accurately fuses predictions from the image and its horizontally flipped version, reducing the effect of left and right shadow regions generated in the disparity map due to occlusions. Both contributions provide significant performance gains over the state-of-the-art in self-supervised depth and pose estimation on the public KITTI benchmark. A video of our approach can be found at //youtu.be/jKNgBeBMx0I.