Commonsense knowledge graph completion is a new challenge for commonsense knowledge graph construction and application. In contrast to factual knowledge graphs such as Freebase and YAGO, commonsense knowledge graphs (CSKGs; e.g., ConceptNet) utilize free-form text to represent named entities, short phrases, and events as their nodes. Such a loose structure results in large and sparse CSKGs, which makes the semantic understanding of these nodes more critical for learning rich commonsense knowledge graph embedding. While current methods leverage semantic similarities to increase the graph density, the semantic plausibility of the nodes and their relations are under-explored. Previous works adopt conceptual abstraction to improve the consistency of modeling (event) plausibility, but they are not scalable enough and still suffer from data sparsity. In this paper, we propose to adopt textual entailment to find implicit entailment relations between CSKG nodes, to effectively densify the subgraph connecting nodes within the same conceptual class, which indicates a similar level of plausibility. Each node in CSKG finds its top entailed nodes using a finetuned transformer over natural language inference (NLI) tasks, which sufficiently capture textual entailment signals. The entailment relation between these nodes are further utilized to: 1) build new connections between source triplets and entailed nodes to densify the sparse CSKGs; 2) enrich the generalization ability of node representations by comparing the node embeddings with a contrastive loss. Experiments on two standard CSKGs demonstrate that our proposed framework EntailE can improve the performance of CSKG completion tasks under both transductive and inductive settings.
Dynamic analyses are a standard approach to analyzing and testing concurrent programs. Such techniques observe program traces and analyze them to infer the presence or absence of bugs. At its core, each analysis maintains a partial order $P$ that represents order dependencies between events of the analyzed trace $\sigma$. Naturally, the scalability of the analysis largely depends on how efficiently it maintains $P$. The standard data structure for this task has thus far been vector clocks. These, however, are slow for analyses that follow a non-streaming style, costing $O(n)$ for inserting (and propagating) each new ordering in $P$, where $n$ is the size of $\sigma$, while they cannot handle the deletion of existing orderings. In this paper we develop collective sparse segment trees (CSSTs), a simple but elegant data structure for generically maintaining a partial order $P$. CSSTs thrive when the width $k$ of $P$ is much smaller than the size $n$ of its domain, allowing inserting, deleting, and querying for orderings in $P$ to run in $O(logn)$ time. For a concurrent trace, $k$ is bounded by the number of its threads, and is normally orders of magnitude smaller than its size $n$, making CSSTs fitting for this setting. Our experimental results confirm that CSSTs are the best data structure currently to handle a range of dynamic analyses from existing literature.
Temporal expression identification is crucial for understanding texts written in natural language. Although highly effective systems such as HeidelTime exist, their limited runtime performance hampers adoption in large-scale applications and production environments. In this paper, we introduce the TEI2GO models, matching HeidelTime's effectiveness but with significantly improved runtime, supporting six languages, and achieving state-of-the-art results in four of them. To train the TEI2GO models, we used a combination of manually annotated reference corpus and developed ``Professor HeidelTime'', a comprehensive weakly labeled corpus of news texts annotated with HeidelTime. This corpus comprises a total of $138,069$ documents (over six languages) with $1,050,921$ temporal expressions, the largest open-source annotated dataset for temporal expression identification to date. By describing how the models were produced, we aim to encourage the research community to further explore, refine, and extend the set of models to additional languages and domains. Code, annotations, and models are openly available for community exploration and use. The models are conveniently on HuggingFace for seamless integration and application.
Sequential learning problems are common in several fields of research and practical applications. Examples include dynamic pricing and assortment, design of auctions and incentives and permeate a large number of sequential treatment experiments. In this paper, we extend one of the most popular learning solutions, the $\epsilon_t$-greedy heuristics, to high-dimensional contexts considering a conservative directive. We do this by allocating part of the time the original rule uses to adopt completely new actions to a more focused search in a restrictive set of promising actions. The resulting rule might be useful for practical applications that still values surprises, although at a decreasing rate, while also has restrictions on the adoption of unusual actions. With high probability, we find reasonable bounds for the cumulative regret of a conservative high-dimensional decaying $\epsilon_t$-greedy rule. Also, we provide a lower bound for the cardinality of the set of viable actions that implies in an improved regret bound for the conservative version when compared to its non-conservative counterpart. Additionally, we show that end-users have sufficient flexibility when establishing how much safety they want, since it can be tuned without impacting theoretical properties. We illustrate our proposal both in a simulation exercise and using a real dataset.
ZKP systems have surged attention and held a fundamental role in contemporary cryptography. Zk-SNARK protocols dominate the ZKP usage, often implemented through arithmetic circuit programming paradigm. However, underconstrained or overconstrained circuits may lead to bugs. Underconstrained circuits refer to circuits that lack the necessary constraints, resulting in unexpected solutions in the circuit and causing the verifier to accept a bogus witness. Overconstrained circuits refer to circuits that are constrained excessively, resulting in the circuit lacking necessary solutions and causing the verifier to accept no witness, rendering the circuit meaningless. This paper introduces a novel approach for pinpointing two distinct types of bugs in ZKP circuits. The method involves encoding the arithmetic circuit constraints to polynomial equation systems and solving polynomial equation systems over a finite field by algebraic computation. The classification of verification results is refined, greatly enhancing the expressive power of the system. We proposed a tool, AC4, to represent the implementation of this method. Experiments demonstrate that AC4 represents a substantial 29% increase in the checked ratio compared to prior work. Within a solvable range, the checking time of AC4 has also exhibited noticeable improvement, demonstrating a magnitude increase compared to previous efforts.
A critical bottleneck limiting imitation learning in robotics is the lack of data. This problem is more severe in mobile manipulation, where collecting demonstrations is harder than in stationary manipulation due to the lack of available and easy-to-use teleoperation interfaces. In this work, we demonstrate TeleMoMa, a general and modular interface for whole-body teleoperation of mobile manipulators. TeleMoMa unifies multiple human interfaces including RGB and depth cameras, virtual reality controllers, keyboard, joysticks, etc., and any combination thereof. In its more accessible version, TeleMoMa works using simply vision (e.g., an RGB-D camera), lowering the entry bar for humans to provide mobile manipulation demonstrations. We demonstrate the versatility of TeleMoMa by teleoperating several existing mobile manipulators - PAL Tiago++, Toyota HSR, and Fetch - in simulation and the real world. We demonstrate the quality of the demonstrations collected with TeleMoMa by training imitation learning policies for mobile manipulation tasks involving synchronized whole-body motion. Finally, we also show that TeleMoMa's teleoperation channel enables teleoperation on site, looking at the robot, or remote, sending commands and observations through a computer network, and perform user studies to evaluate how easy it is for novice users to learn to collect demonstrations with different combinations of human interfaces enabled by our system. We hope TeleMoMa becomes a helpful tool for the community enabling researchers to collect whole-body mobile manipulation demonstrations. For more information and video results, //robin-lab.cs.utexas.edu/telemoma-web.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.
Traffic forecasting is an important factor for the success of intelligent transportation systems. Deep learning models including convolution neural networks and recurrent neural networks have been applied in traffic forecasting problems to model the spatial and temporal dependencies. In recent years, to model the graph structures in the transportation systems as well as the contextual information, graph neural networks (GNNs) are introduced as new tools and have achieved the state-of-the-art performance in a series of traffic forecasting problems. In this survey, we review the rapidly growing body of recent research using different GNNs, e.g., graph convolutional and graph attention networks, in various traffic forecasting problems, e.g., road traffic flow and speed forecasting, passenger flow forecasting in urban rail transit systems, demand forecasting in ride-hailing platforms, etc. We also present a collection of open data and source resources for each problem, as well as future research directions. To the best of our knowledge, this paper is the first comprehensive survey that explores the application of graph neural networks for traffic forecasting problems. We have also created a public Github repository to update the latest papers, open data and source resources.
Visual dialogue is a challenging task that needs to extract implicit information from both visual (image) and textual (dialogue history) contexts. Classical approaches pay more attention to the integration of the current question, vision knowledge and text knowledge, despising the heterogeneous semantic gaps between the cross-modal information. In the meantime, the concatenation operation has become de-facto standard to the cross-modal information fusion, which has a limited ability in information retrieval. In this paper, we propose a novel Knowledge-Bridge Graph Network (KBGN) model by using graph to bridge the cross-modal semantic relations between vision and text knowledge in fine granularity, as well as retrieving required knowledge via an adaptive information selection mode. Moreover, the reasoning clues for visual dialogue can be clearly drawn from intra-modal entities and inter-modal bridges. Experimental results on VisDial v1.0 and VisDial-Q datasets demonstrate that our model outperforms exiting models with state-of-the-art results.
Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.