Estimating the information transmission capability of a quantum channel remains one of the fundamental problems in quantum information processing. In contrast to classical channels, the information-carrying capability of quantum channels is contextual. One of the most significant manifestations of this is the superadditivity of the channel capacity: the capacity of two quantum channels used together can be larger than the sum of the individual capacities. Here, we present a one-parameter family of channels for which as the parameter increases its one-way quantum and private capacities increase while its two-way capacities decrease. We also exhibit a one-parameter family of states with analogous behavior with respect to the one- and two-way distillable entanglement and secret key. Our constructions demonstrate that noise is context dependent in quantum communication.
Symmetry is a cornerstone of much of mathematics, and many probability distributions possess symmetries characterized by their invariance to a collection of group actions. Thus, many mathematical and statistical methods rely on such symmetry holding and ostensibly fail if symmetry is broken. This work considers under what conditions a sequence of probability measures asymptotically gains such symmetry or invariance to a collection of group actions. Considering the many symmetries of the Gaussian distribution, this work effectively proposes a non-parametric type of central limit theorem. That is, a Lipschitz function of a high dimensional random vector will be asymptotically invariant to the actions of certain compact topological groups. Applications of this include a partial law of the iterated logarithm for uniformly random points in an $\ell_p^n$-ball and an asymptotic equivalence between classical parametric statistical tests and their randomization counterparts even when invariance assumptions are violated.
We observe a large variety of robots in terms of their bodies, sensors, and actuators. Given the commonalities in the skill sets, teaching each skill to each different robot independently is inefficient and not scalable when the large variety in the robotic landscape is considered. If we can learn the correspondences between the sensorimotor spaces of different robots, we can expect a skill that is learned in one robot can be more directly and easily transferred to the other robots. In this paper, we propose a method to learn correspondences between robots that have significant differences in their morphologies: a fixed-based manipulator robot with joint control and a differential drive mobile robot. For this, both robots are first given demonstrations that achieve the same tasks. A common latent representation is formed while learning the corresponding policies. After this initial learning stage, the observation of a new task execution by one robot becomes sufficient to generate a latent space representation pertaining to the other robot to achieve the same task. We verified our system in a set of experiments where the correspondence between two simulated robots is learned (1) when the robots need to follow the same paths to achieve the same task, (2) when the robots need to follow different trajectories to achieve the same task, and (3) when complexities of the required sensorimotor trajectories are different for the robots considered. We also provide a proof-of-the-concept realization of correspondence learning between a real manipulator robot and a simulated mobile robot.
Models of complex technological systems inherently contain interactions and dependencies among their input variables that affect their joint influence on the output. Such models are often computationally expensive and few sensitivity analysis methods can effectively process such complexities. Moreover, the sensitivity analysis field as a whole pays limited attention to the nature of interaction effects, whose understanding can prove to be critical for the design of safe and reliable systems. In this paper, we introduce and extensively test a simple binning approach for computing sensitivity indices and demonstrate how complementing it with the smart visualization method, simulation decomposition (SimDec), can permit important insights into the behavior of complex engineering models. The simple binning approach computes first-, second-order effects, and a combined sensitivity index, and is considerably more computationally efficient than Sobol' indices. The totality of the sensitivity analysis framework provides an efficient and intuitive way to analyze the behavior of complex systems containing interactions and dependencies.
A new mechanical model on noncircular shallow tunnelling considering initial stress field is proposed in this paper by constraining far-field ground surface to eliminate displacement singularity at infinity, and the originally unbalanced tunnel excavation problem in existing solutions is turned to an equilibrium one of mixed boundaries. By applying analytic continuation, the mixed boundaries are transformed to a homogenerous Riemann-Hilbert problem, which is subsequently solved via an efficient and accurate iterative method with boundary conditions of static equilibrium, displacement single-valuedness, and traction along tunnel periphery. The Lanczos filtering technique is used in the final stress and displacement solution to reduce the Gibbs phenomena caused by the constrained far-field ground surface for more accurte results. Several numerical cases are conducted to intensively verify the proposed solution by examining boundary conditions and comparing with existing solutions, and all the results are in good agreements. Then more numerical cases are conducted to investigate the stress and deformation distribution along ground surface and tunnel periphery, and several engineering advices are given. Further discussions on the defects of the proposed solution are also conducted for objectivity.
This article investigates a local discontinuous Galerkin (LDG) method for one-dimensional and two-dimensional singularly perturbed reaction-diffusion problems on a Shishkin mesh. During this process, due to the inability of the energy norm to fully capture the behavior of the boundary layers appearing in the solutions, a balanced norm is introduced. By designing novel numerical fluxes and constructing special interpolations, optimal convergences under the balanced norm are achieved in both 1D and 2D cases. Numerical experiments support the main theoretical conclusions.
Differential geometric approaches are ubiquitous in several fields of mathematics, physics and engineering, and their discretizations enable the development of network-based mathematical and computational frameworks, which are essential for large-scale data science. The Forman-Ricci curvature (FRC) - a statistical measure based on Riemannian geometry and designed for networks - is known for its high capacity for extracting geometric information from complex networks. However, extracting information from dense networks is still challenging due to the combinatorial explosion of high-order network structures. Motivated by this challenge we sought a set-theoretic representation theory for high-order network cells and FRC, as well as their associated concepts and properties, which together provide an alternative and efficient formulation for computing high-order FRC in complex networks. We provide a pseudo-code, a software implementation coined FastForman, as well as a benchmark comparison with alternative implementations. Crucially, our representation theory reveals previous computational bottlenecks and also accelerates the computation of FRC. As a consequence, our findings open new research possibilities in complex systems where higher-order geometric computations are required.
We formulate and test a technique to use Emergent Communication (EC) with a pre-trained multilingual model to improve on modern Unsupervised NMT systems, especially for low-resource languages. It has been argued that the current dominant paradigm in NLP of pre-training on text-only corpora will not yield robust natural language understanding systems, and the need for grounded, goal-oriented, and interactive language learning has been high lighted. In our approach, we embed a multilingual model (mBART, Liu et al., 2020) into an EC image-reference game, in which the model is incentivized to use multilingual generations to accomplish a vision-grounded task. The hypothesis is that this will align multiple languages to a shared task space. We present two variants of EC Fine-Tuning (Steinert-Threlkeld et al., 2022), one of which outperforms a backtranslation-only baseline in all four languages investigated, including the low-resource language Nepali.
Rational function approximations provide a simple but flexible alternative to polynomial approximation, allowing one to capture complex non-linearities without oscillatory artifacts. However, there have been few attempts to use rational functions on noisy data due to the likelihood of creating spurious singularities. To avoid the creation of singularities, we use Bernstein polynomials and appropriate conditions on their coefficients to force the denominator to be strictly positive. While this reduces the range of rational polynomials that can be expressed, it keeps all the benefits of rational functions while maintaining the robustness of polynomial approximation in noisy data scenarios. Our numerical experiments on noisy data show that existing rational approximation methods continually produce spurious poles inside the approximation domain. This contrasts our method, which cannot create poles in the approximation domain and provides better fits than a polynomial approximation and even penalized splines on functions with multiple variables. Moreover, guaranteeing pole-free in an interval is critical for estimating non-constant coefficients when numerically solving differential equations using spectral methods. This provides a compact representation of the original differential equation, allowing numeric solvers to achieve high accuracy quickly, as seen in our experiments.
The equioscillation theorem interleaves the Haar condition, the existence and uniqueness and strong uniqueness of the optimal Chebyshev approximation and its characterization by the equioscillation condition in a way that cannot extend to multivariate approximation: Rice~[\emph{Transaction of the AMS}, 1963] says ''A form of alternation is still present for functions of several variables. However, there is apparently no simple method of distinguishing between the alternation of a best approximation and the alternation of other approximating functions. This is due to the fact that there is no natural ordering of the critical points.'' In addition, in the context of multivariate approximation the Haar condition is typically not satisfied and strong uniqueness may hold or not. The present paper proposes an multivariate equioscillation theorem, which includes such a simple alternation condition on error extrema, existence and a sufficient condition for strong uniqueness. To this end, the relationship between the properties interleaved in the univariate equioscillation theorem is clarified: first, a weak Haar condition is proposed, which simply implies existence. Second, the equioscillation condition is shown to be equivalent to the optimality condition of convex optimization, hence characterizing optimality independently from uniqueness. It is reformulated as the synchronized oscillations between the error extrema and the components of a related Haar matrix kernel vector, in a way that applies to multivariate approximation. Third, an additional requirement on the involved Haar matrix and its kernel vector, called strong equioscillation, is proved to be sufficient for the strong uniqueness of the solution. These three disconnected conditions give rise to a multivariate equioscillation theorem, where existence, characterization by equioscillation and strong uniqueness are separated, without involving the too restrictive Haar condition. Remarkably, relying on optimality condition of convex optimization gives rise to a quite simple proof. Instances of multivariate problems with strongly unique, non-strong but unique and non-unique solutions are presented to illustrate the scope of the theorem.
We establish precise structural and risk equivalences between subsampling and ridge regularization for ensemble ridge estimators. Specifically, we prove that linear and quadratic functionals of subsample ridge estimators, when fitted with different ridge regularization levels $\lambda$ and subsample aspect ratios $\psi$, are asymptotically equivalent along specific paths in the $(\lambda,\psi)$-plane (where $\psi$ is the ratio of the feature dimension to the subsample size). Our results only require bounded moment assumptions on feature and response distributions and allow for arbitrary joint distributions. Furthermore, we provide a data-dependent method to determine the equivalent paths of $(\lambda,\psi)$. An indirect implication of our equivalences is that optimally tuned ridge regression exhibits a monotonic prediction risk in the data aspect ratio. This resolves a recent open problem raised by Nakkiran et al. for general data distributions under proportional asymptotics, assuming a mild regularity condition that maintains regression hardness through linearized signal-to-noise ratios.