亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Sorting is one of the most basic algorithms, and developing highly parallel sorting programs is becoming increasingly important in high-performance computing because the number of CPU cores per node in modern supercomputers tends to increase. In this study, we have implemented two multi-threaded sorting algorithms based on samplesort and compared their performance on the supercomputer Fugaku. The first algorithm divides an input sequence into multiple blocks, sorts each block, and then selects pivots by sampling from each block at regular intervals. Each block is then partitioned using the pivots, and partitions in different blocks are merged into a single sorted sequence. The second algorithm differs from the first one in only selecting pivots, where the binary search is used to select pivots such that the number of elements in each partition is equal. We compare the performance of the two algorithms with different sequential sorting and multiway merging algorithms. We demonstrate that the second algorithm with BlockQuicksort (a quicksort accelerated by reducing conditional branches) for sequential sorting and the selection tree for merging shows consistently high speed and high parallel efficiency for various input data types and data sizes.

相關內容

Gaussianization is a simple generative model that can be trained without backpropagation. It has shown compelling performance on low dimensional data. As the dimension increases, however, it has been observed that the convergence speed slows down. We show analytically that the number of required layers scales linearly with the dimension for Gaussian input. We argue that this is because the model is unable to capture dependencies between dimensions. Empirically, we find the same linear increase in cost for arbitrary input $p(x)$, but observe favorable scaling for some distributions. We explore potential speed-ups and formulate challenges for further research.

Penalized regression methods such as ridge regression heavily rely on the choice of a tuning or penalty parameter, which is often computed via cross-validation. Discrepancies in the value of the penalty parameter may lead to substantial differences in regression coefficient estimates and predictions. In this paper, we investigate the effect of single observations on the optimal choice of the tuning parameter, showing how the presence of influential points can change it dramatically. We distinguish between points as ``expanders'' and ``shrinkers'', based on their effect on the model complexity. Our approach supplies a visual exploratory tool to identify influential points, naturally implementable for high-dimensional data where traditional approaches usually fail. Applications to simulated and real data examples, both low- and high-dimensional, are presented. The visual tool is implemented in the R package influridge.

Generative Adversarial Networks (GANs) are powerful models able to synthesize data samples closely resembling the distribution of real data, yet the diversity of those generated samples is limited due to the so-called mode collapse phenomenon observed in GANs. Especially prone to mode collapse are conditional GANs, which tend to ignore the input noise vector and focus on the conditional information. Recent methods proposed to mitigate this limitation increase the diversity of generated samples, yet they reduce the performance of the models when similarity of samples is required. To address this shortcoming, we propose a novel method to selectively increase the diversity of GAN-generated samples. By adding a simple, yet effective regularization to the training loss function we encourage the generator to discover new data modes for inputs related to diverse outputs while generating consistent samples for the remaining ones. More precisely, we maximise the ratio of distances between generated images and input latent vectors scaling the effect according to the diversity of samples for a given conditional input. We show the superiority of our method in a synthetic benchmark as well as a real-life scenario of simulating data from the Zero Degree Calorimeter of ALICE experiment in LHC, CERN.

Although we are currently in the era of noisy intermediate scale quantum devices, several studies are being conducted with the aim of bringing machine learning to the quantum domain. Currently, quantum variational circuits are one of the main strategies used to build such models. However, despite its widespread use, we still do not know what are the minimum resources needed to create a quantum machine learning model. In this article, we analyze how the expressiveness of the parametrization affects the cost function. We analytically show that the more expressive the parametrization is, the more the cost function will tend to concentrate around a value that depends both on the chosen observable and on the number of qubits used. For this, we initially obtain a relationship between the expressiveness of the parametrization and the mean value of the cost function. Afterwards, we relate the expressivity of the parametrization with the variance of the cost function. Finally, we show some numerical simulation results that confirm our theoretical-analytical predictions. To the best of our knowledge, this is the first time that these two important aspects of quantum neural networks are explicitly connected.

The accurate and efficient evaluation of Newtonian potentials over general 2-D domains is important for the numerical solution of Poisson's equation and volume integral equations. In this paper, we present a simple and efficient high-order algorithm for computing the Newtonian potential over a planar domain discretized by an unstructured mesh. The algorithm is based on the use of Green's third identity for transforming the Newtonian potential into a collection of layer potentials over the boundaries of the mesh elements, which can be easily evaluated by the Helsing-Ojala method. One important component of our algorithm is the use of high-order (up to order 20) bivariate polynomial interpolation in the monomial basis, for which we provide extensive justification. The performance of our algorithm is illustrated through several numerical experiments.

The emergence of different sensors (Near-Infrared, Depth, etc.) is a remedy for the limited application scenarios of traditional RGB camera. The RGB-X tasks, which rely on RGB input and another type of data input to resolve specific problems, have become a popular research topic in multimedia. A crucial part in two-branch RGB-X deep neural networks is how to fuse information across modalities. Given the tremendous information inside RGB-X networks, previous works typically apply naive fusion (e.g., average or max fusion) or only focus on the feature fusion at the same scale(s). While in this paper, we propose a novel method called RXFOOD for the fusion of features across different scales within the same modality branch and from different modality branches simultaneously in a unified attention mechanism. An Energy Exchange Module is designed for the interaction of each feature map's energy matrix, who reflects the inter-relationship of different positions and different channels inside a feature map. The RXFOOD method can be easily incorporated to any dual-branch encoder-decoder network as a plug-in module, and help the original backbone network better focus on important positions and channels for object of interest detection. Experimental results on RGB-NIR salient object detection, RGB-D salient object detection, and RGBFrequency image manipulation detection demonstrate the clear effectiveness of the proposed RXFOOD.

In this work, we investigate the inference time of the MobileNet family, EfficientNet V1 and V2 family, VGG models, Resnet family, and InceptionV3 on four edge platforms. Specifically NVIDIA Jetson Nano, Intel Neural Stick, Google Coral USB Dongle, and Google Coral PCIe. Our main contribution is a thorough analysis of the aforementioned models in multiple settings, especially as a function of input size, the presence of the classification head, its size, and the scale of the model. Since throughout the industry, those architectures are mainly utilized as feature extractors we put our main focus on analyzing them as such. We show that Google platforms offer the fastest average inference time, especially for newer models like MobileNet or EfficientNet family, while Intel Neural Stick is the most universal accelerator allowing to run most architectures. These results should provide guidance for engineers in the early stages of AI edge systems development. All of them are accessible at //bulletprove.com/research/edge_inference_results.csv

Human motion prediction has achieved a brilliant performance with the help of CNNs, which facilitates human-machine cooperation. However, currently, there is no work evaluating the potential risk in human motion prediction when facing adversarial attacks, which may cause danger in real applications. The adversarial attack will face two problems against human motion prediction: 1. For naturalness, pose data is highly related to the physical dynamics of human skeletons where Lp norm constraints cannot constrain the adversarial example well; 2. Unlike the pixel value in images, pose data is diverse at scale because of the different acquisition equipment and the data processing, which makes it hard to set fixed parameters to perform attacks. To solve the problems above, we propose a new adversarial attack method that perturbs the input human motion sequence by maximizing the prediction error with physical constraints. Specifically, we introduce a novel adaptable scheme that facilitates the attack to suit the scale of the target pose and two physical constraints to enhance the imperceptibility of the adversarial example. The evaluating experiments on three datasets show that the prediction errors of all target models are enlarged significantly, which means current convolution-based human motion prediction models can be easily disturbed under the proposed attack. The quantitative analysis shows that prior knowledge and semantic information modeling can be the key to the adversarial robustness of human motion predictors. The qualitative results indicate that the adversarial sample is hard to be noticed when compared frame by frame but is relatively easy to be detected when the sample is animated.

Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.

Since deep neural networks were developed, they have made huge contributions to everyday lives. Machine learning provides more rational advice than humans are capable of in almost every aspect of daily life. However, despite this achievement, the design and training of neural networks are still challenging and unpredictable procedures. To lower the technical thresholds for common users, automated hyper-parameter optimization (HPO) has become a popular topic in both academic and industrial areas. This paper provides a review of the most essential topics on HPO. The first section introduces the key hyper-parameters related to model training and structure, and discusses their importance and methods to define the value range. Then, the research focuses on major optimization algorithms and their applicability, covering their efficiency and accuracy especially for deep learning networks. This study next reviews major services and toolkits for HPO, comparing their support for state-of-the-art searching algorithms, feasibility with major deep learning frameworks, and extensibility for new modules designed by users. The paper concludes with problems that exist when HPO is applied to deep learning, a comparison between optimization algorithms, and prominent approaches for model evaluation with limited computational resources.

北京阿比特科技有限公司