Building upon advancements in Large Language Models (LLMs), the field of audio processing has seen increased interest in training audio generation tasks with discrete audio token sequences. However, directly discretizing audio by neural audio codecs often results in sequences that fundamentally differ from text sequences. Unlike text, where text token sequences are deterministic, discrete audio tokens can exhibit significant variability based on contextual factors, while still producing perceptually identical audio segments. We refer to this phenomenon as \textbf{Discrete Representation Inconsistency (DRI)}. This inconsistency can lead to a single audio segment being represented by multiple divergent sequences, which creates confusion in neural codec language models and results in omissions and repetitions during speech generation. In this paper, we quantitatively analyze the DRI phenomenon within popular audio tokenizers such as EnCodec. Our approach effectively mitigates the DRI phenomenon of the neural audio codec. Furthermore, extensive experiments on the neural codec language model over LibriTTS and large-scale MLS datases (44,000 hours) demonstrate the effectiveness and generality of our method. The demo of audio samples is available online~\footnote{\url{//consistencyinneuralcodec.github.io}}.
The efficacy of diffusion models in generating a spectrum of data modalities, including images, text, and videos, has spurred inquiries into their utility in molecular generation, yielding significant advancements in the field. However, the molecular generation process with diffusion models involves multiple autoregressive steps over a finite time horizon, leading to exposure bias issues inherently. To address the exposure bias issue, we propose a training framework named GapDiff. The core idea of GapDiff is to utilize model-predicted conformations as ground truth probabilistically during training, aiming to mitigate the data distributional disparity between training and inference, thereby enhancing the affinity of generated molecules. We conduct experiments using a 3D molecular generation model on the CrossDocked2020 dataset, and the vina energy and diversity demonstrate the potency of our framework with superior affinity. GapDiff is available at \url{//github.com/HUGHNew/gapdiff}.
The rapid advancement of Large Language Models (LLMs) has led to their increased integration into mobile devices for personalized assistance, which enables LLMs to call external API functions to enhance their performance. However, challenges such as data scarcity, ineffective question formatting, and catastrophic forgetting hinder the development of on-device LLM agents. To tackle these issues, we propose Alopex, a framework that enables precise on-device function calls using the Fox LLM. Alopex introduces a logic-based method for generating high-quality training data and a novel ``description-question-output'' format for fine-tuning, reducing risks of function information leakage. Additionally, a data mixing strategy is used to mitigate catastrophic forgetting, combining function call data with textbook datasets to enhance performance in various tasks. Experimental results show that Alopex improves function call accuracy and significantly reduces catastrophic forgetting, providing a robust solution for integrating function call capabilities into LLMs without manual intervention.
Recent advancements in 3D Gaussian Splatting (3DGS) have unlocked significant potential for modeling 3D head avatars, providing greater flexibility than mesh-based methods and more efficient rendering compared to NeRF-based approaches. Despite these advancements, the creation of controllable 3DGS-based head avatars remains time-intensive, often requiring tens of minutes to hours. To expedite this process, we here introduce the "Gaussian Deja-vu" framework, which first obtains a generalized model of the head avatar and then personalizes the result. The generalized model is trained on large 2D (synthetic and real) image datasets. This model provides a well-initialized 3D Gaussian head that is further refined using a monocular video to achieve the personalized head avatar. For personalizing, we propose learnable expression-aware rectification blendmaps to correct the initial 3D Gaussians, ensuring rapid convergence without the reliance on neural networks. Experiments demonstrate that the proposed method meets its objectives. It outperforms state-of-the-art 3D Gaussian head avatars in terms of photorealistic quality as well as reduces training time consumption to at least a quarter of the existing methods, producing the avatar in minutes.
Recent advances in LLM have been instrumental in autonomous robot control and human-robot interaction by leveraging their vast general knowledge and capabilities to understand and reason across a wide range of tasks and scenarios. Previous works have investigated various prompt engineering techniques for improving the performance of LLM to accomplish tasks, while others have proposed methods that utilize LLMs to plan and execute tasks based on the available functionalities of a given robot platform. In this work, we consider both lines of research by comparing prompt engineering techniques and combinations thereof within the application of high-level task planning and execution in service robotics. We define a diverse set of tasks and a simple set of functionalities in simulation, and measure task completion accuracy and execution time for several state-of-the-art models.
Diffusion models have obtained substantial progress in image-to-video generation. However, in this paper, we find that these models tend to generate videos with less motion than expected. We attribute this to the issue called conditional image leakage, where the image-to-video diffusion models (I2V-DMs) tend to over-rely on the conditional image at large time steps. We further address this challenge from both inference and training aspects. First, we propose to start the generation process from an earlier time step to avoid the unreliable large-time steps of I2V-DMs, as well as an initial noise distribution with optimal analytic expressions (Analytic-Init) by minimizing the KL divergence between it and the actual marginal distribution to bridge the training-inference gap. Second, we design a time-dependent noise distribution (TimeNoise) for the conditional image during training, applying higher noise levels at larger time steps to disrupt it and reduce the model's dependency on it. We validate these general strategies on various I2V-DMs on our collected open-domain image benchmark and the UCF101 dataset. Extensive results show that our methods outperform baselines by producing higher motion scores with lower errors while maintaining image alignment and temporal consistency, thereby yielding superior overall performance and enabling more accurate motion control. The project page: \url{//cond-image-leak.github.io/}.
The rapid development of Multimodal Large Language Models (MLLMs) has expanded their capabilities from image comprehension to video understanding. However, most of these MLLMs focus primarily on offline video comprehension, necessitating extensive processing of all video frames before any queries can be made. This presents a significant gap compared to the human ability to watch, listen, think, and respond to streaming inputs in real time, highlighting the limitations of current MLLMs. In this paper, we introduce StreamingBench, the first comprehensive benchmark designed to evaluate the streaming video understanding capabilities of MLLMs. StreamingBench assesses three core aspects of streaming video understanding: (1) real-time visual understanding, (2) omni-source understanding, and (3) contextual understanding. The benchmark consists of 18 tasks, featuring 900 videos and 4,500 human-curated QA pairs. Each video features five questions presented at different time points to simulate a continuous streaming scenario. We conduct experiments on StreamingBench with 13 open-source and proprietary MLLMs and find that even the most advanced proprietary MLLMs like Gemini 1.5 Pro and GPT-4o perform significantly below human-level streaming video understanding capabilities. We hope our work can facilitate further advancements for MLLMs, empowering them to approach human-level video comprehension and interaction in more realistic scenarios.
Modulation classification is a very challenging task since the signals intertwine with various ambient noises. Methods are required that can classify them without adding extra steps like denoising, which introduces computational complexity. In this study, we propose a vision transformer (ViT) based model named NMformer to predict the channel modulation images with different noise levels in wireless communication. Since ViTs are most effective for RGB images, we generated constellation diagrams from the modulated signals. The diagrams provide the information from the signals in a 2-D representation form. We trained NMformer on 106, 800 modulation images to build the base classifier and only used 3, 000 images to fine-tune for specific tasks. Our proposed model has two different kinds of prediction setups: in-distribution and out-of-distribution. Our model achieves 4.67% higher accuracy than the base classifier when finetuned and tested on high signal-to-noise ratios (SNRs) in-distribution classes. Moreover, the fine-tuned low SNR task achieves a higher accuracy than the base classifier. The fine-tuned classifier becomes much more effective than the base classifier by achieving higher accuracy when predicted, even on unseen data from out-of-distribution classes. Extensive experiments show the effectiveness of NMformer for a wide range of SNRs.
The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.
Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.
Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, they often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.