亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Future spacecraft and surface robotic missions require increasingly capable autonomy stacks for exploring challenging and unstructured domains and trajectory optimization will be a cornerstone of such autonomy stacks. However, the nonlinear optimization solvers required remain too slow for use on relatively resource constrained flight-grade computers. In this work, we turn towards amortized optimization, a learning-based technique for accelerating optimization run times, and present TOAST: Trajectory Optimization with Merit Function Warm Starts. Offline, using data collected from a simulation, we train a neural network to learn a mapping to the full primal and dual solutions given the problem parameters. Crucially, we build upon recent results from decision-focused learning and present a set of decision-focused loss functions using the notion of merit functions for optimization problems. We show that training networks with such constraint-informed losses can better encode the structure of the trajectory optimization problem and jointly learn to reconstruct the primal-dual solution while also yielding improved constraint satisfaction. Through numerical experiments on a Lunar rover problem, we demonstrate that TOAST outperforms benchmark approaches in terms of both computation times and network prediction constraint satisfaction.

相關內容

Model selection for a given target task can be costly, as it may entail extensive annotation of the quality of outputs of different models. We introduce DiffUse, an efficient method to make an informed decision between candidate text generation models. DiffUse reduces the required amount of preference annotations, thus saving valuable time and resources in performing evaluation. DiffUse intelligently selects instances by clustering embeddings that represent the semantic differences between model outputs. Thus, it is able to identify a subset of examples that are more informative for preference decisions. Our method is model-agnostic, and can be applied to any text generation model. Moreover, we propose a practical iterative approach for dynamically determining how many instances to annotate. In a series of experiments over hundreds of model pairs, we demonstrate that DiffUse can dramatically reduce the required number of annotations -- by up to 75% -- while maintaining high evaluation reliability.

This work explores the zero-shot adaptation capability of semantic skills, semantically interpretable experts' behavior patterns, in cross-domain settings, where a user input in interleaved multi-modal snippets can prompt a new long-horizon task for different domains. In these cross-domain settings, we present a semantic skill translator framework SemTra which utilizes a set of multi-modal models to extract skills from the snippets, and leverages the reasoning capabilities of a pretrained language model to adapt these extracted skills to the target domain. The framework employs a two-level hierarchy for adaptation: task adaptation and skill adaptation. During task adaptation, seq-to-seq translation by the language model transforms the extracted skills into a semantic skill sequence, which is tailored to fit the cross-domain contexts. Skill adaptation focuses on optimizing each semantic skill for the target domain context, through parametric instantiations that are facilitated by language prompting and contrastive learning-based context inferences. This hierarchical adaptation empowers the framework to not only infer a complex task specification in one-shot from the interleaved multi-modal snippets, but also adapt it to new domains with zero-shot learning abilities. We evaluate our framework with Meta-World, Franka Kitchen, RLBench, and CARLA environments. The results clarify the framework's superiority in performing long-horizon tasks and adapting to different domains, showing its broad applicability in practical use cases, such as cognitive robots interpreting abstract instructions and autonomous vehicles operating under varied configurations.

Learning a universal policy across different robot morphologies can significantly improve learning efficiency and enable zero-shot generalization to unseen morphologies. However, learning a highly performant universal policy requires sophisticated architectures like transformers (TF) that have larger memory and computational cost than simpler multi-layer perceptrons (MLP). To achieve both good performance like TF and high efficiency like MLP at inference time, we propose HyperDistill, which consists of: (1) A morphology-conditioned hypernetwork (HN) that generates robot-wise MLP policies, and (2) A policy distillation approach that is essential for successful training. We show that on UNIMAL, a benchmark with hundreds of diverse morphologies, HyperDistill performs as well as a universal TF teacher policy on both training and unseen test robots, but reduces model size by 6-14 times, and computational cost by 67-160 times in different environments. Our analysis attributes the efficiency advantage of HyperDistill at inference time to knowledge decoupling, i.e., the ability to decouple inter-task and intra-task knowledge, a general principle that could also be applied to improve inference efficiency in other domains.

Deep Neural Networks (DNNs) based semantic segmentation of the robotic instruments and tissues can enhance the precision of surgical activities in robot-assisted surgery. However, in biological learning, DNNs cannot learn incremental tasks over time and exhibit catastrophic forgetting, which refers to the sharp decline in performance on previously learned tasks after learning a new one. Specifically, when data scarcity is the issue, the model shows a rapid drop in performance on previously learned instruments after learning new data with new instruments. The problem becomes worse when it limits releasing the dataset of the old instruments for the old model due to privacy concerns and the unavailability of the data for the new or updated version of the instruments for the continual learning model. For this purpose, we develop a privacy-preserving synthetic continual semantic segmentation framework by blending and harmonizing (i) open-source old instruments foreground to the synthesized background without revealing real patient data in public and (ii) new instruments foreground to extensively augmented real background. To boost the balanced logit distillation from the old model to the continual learning model, we design overlapping class-aware temperature normalization (CAT) by controlling model learning utility. We also introduce multi-scale shifted-feature distillation (SD) to maintain long and short-range spatial relationships among the semantic objects where conventional short-range spatial features with limited information reduce the power of feature distillation. We demonstrate the effectiveness of our framework on the EndoVis 2017 and 2018 instrument segmentation dataset with a generalized continual learning setting. Code is available at~\url{//github.com/XuMengyaAmy/Synthetic_CAT_SD}.

Despite the recent progress in deep learning, most approaches still go for a silo-like solution, focusing on learning each task in isolation: training a separate neural network for each individual task. Many real-world problems, however, call for a multi-modal approach and, therefore, for multi-tasking models. Multi-task learning (MTL) aims to leverage useful information across tasks to improve the generalization capability of a model. This thesis is concerned with multi-task learning in the context of computer vision. First, we review existing approaches for MTL. Next, we propose several methods that tackle important aspects of multi-task learning. The proposed methods are evaluated on various benchmarks. The results show several advances in the state-of-the-art of multi-task learning. Finally, we discuss several possibilities for future work.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Collaborative filtering often suffers from sparsity and cold start problems in real recommendation scenarios, therefore, researchers and engineers usually use side information to address the issues and improve the performance of recommender systems. In this paper, we consider knowledge graphs as the source of side information. We propose MKR, a Multi-task feature learning approach for Knowledge graph enhanced Recommendation. MKR is a deep end-to-end framework that utilizes knowledge graph embedding task to assist recommendation task. The two tasks are associated by cross&compress units, which automatically share latent features and learn high-order interactions between items in recommender systems and entities in the knowledge graph. We prove that cross&compress units have sufficient capability of polynomial approximation, and show that MKR is a generalized framework over several representative methods of recommender systems and multi-task learning. Through extensive experiments on real-world datasets, we demonstrate that MKR achieves substantial gains in movie, book, music, and news recommendation, over state-of-the-art baselines. MKR is also shown to be able to maintain a decent performance even if user-item interactions are sparse.

The low resolution of objects of interest in aerial images makes pedestrian detection and action detection extremely challenging tasks. Furthermore, using deep convolutional neural networks to process large images can be demanding in terms of computational requirements. In order to alleviate these challenges, we propose a two-step, yes and no question answering framework to find specific individuals doing one or multiple specific actions in aerial images. First, a deep object detector, Single Shot Multibox Detector (SSD), is used to generate object proposals from small aerial images. Second, another deep network, is used to learn a latent common sub-space which associates the high resolution aerial imagery and the pedestrian action labels that are provided by the human-based sources

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司