This paper proposes a new framework using physics-informed neural networks (PINNs) to simulate complex structural systems that consist of single and double beams based on Euler-Bernoulli and Timoshenko theory, where the double beams are connected with a Winkler foundation. In particular, forward and inverse problems for the Euler-Bernoulli and Timoshenko partial differential equations (PDEs) are solved using nondimensional equations with the physics-informed loss function. Higher-order complex beam PDEs are efficiently solved for forward problems to compute the transverse displacements and cross-sectional rotations with less than 1e-3 percent error. Furthermore, inverse problems are robustly solved to determine the unknown dimensionless model parameters and applied force in the entire space-time domain, even in the case of noisy data. The results suggest that PINNs are a promising strategy for solving problems in engineering structures and machines involving beam systems.
Proof Blocks is a software tool that allows students to practice writing mathematical proofs by dragging and dropping lines instead of writing proofs from scratch. Proof Blocks offers the capability of assigning partial credit and providing solution quality feedback to students. This is done by computing the edit distance from a student's submission to some predefined set of solutions. In this work, we propose an algorithm for the edit distance problem that significantly outperforms the baseline procedure of exhaustively enumerating over the entire search space. Our algorithm relies on a reduction to the minimum vertex cover problem. We benchmark our algorithm on thousands of student submissions from multiple courses, showing that the baseline algorithm is intractable, and that our proposed algorithm is critical to enable classroom deployment. Our new algorithm has also been used for problems in many other domains where the solution space can be modeled as a DAG, including but not limited to Parsons Problems for writing code, helping students understand packet ordering in networking protocols, and helping students sketch solution steps for physics problems. Integrated into multiple learning management systems, the algorithm serves thousands of students each year.
This work investigates the Monte Carlo Tree Search (MCTS) method combined with dedicated heuristics for solving the Weighted Vertex Coloring Problem. In addition to the basic MCTS algorithm, we study several MCTS variants where the conventional random simulation is replaced by other simulation strategies including greedy and local search heuristics. We conduct experiments on well-known benchmark instances to assess these combined MCTS variants. We provide empirical evidence to shed light on the advantages and limits of each simulation strategy. This is an extension of the work of Grelier and al. presented at EvoCOP2022.
We harness the physics-informed neural network (PINN) approach to extend the utility of phenomenological models for particle migration in shear flow. Specifically, we propose to constrain the neural network training via a model for the physics of shear-induced particle migration in suspensions. Then, we train the PINN against experimental data from the literature, showing that this approach provides both better fidelity to the experiments, and a novel understanding of the relative roles of the hypothesized migration fluxes. We first verify the PINN approach for solving the inverse problem of radial particle migration in a non-Brownian suspension in an annular Couette flow. In this classical case, the PINN yields the same value (as reported in the literature) for the ratio of the two parameters of the empirical model. Next, we apply the PINN approach to analyze experiments on particle migration in both non-Brownian and Brownian suspensions in Poiseuille slot flow, for which a definitive calibration of the phenomenological migration model has been lacking. Using the PINN approach, we identify the unknown/empirical parameters in the physical model through the inverse solver capability of PINNs. Specifically, the values are significantly different from those for the Couette cell, highlighting an inconsistency in the literature that uses the latter value for Poiseuille flow. Importantly, the PINN results also show that the inferred values of the empirical model's parameters vary with the shear P\'eclet number and the particle bulk volume fraction of the suspension, instead of being constant as assumed in some previous literature.
In this paper, by constructing extremely hard examples of CSP (with large domains) and SAT (with long clauses), we prove that such examples cannot be solved without exhaustive search, which implies a weaker conclusion P $\neq$ NP. This constructive approach for proving impossibility results is very different (and missing) from those currently used in computational complexity theory, but is similar to that used by Kurt G\"{o}del in proving his famous logical impossibility results. Just as shown by G\"{o}del's results that proving formal unprovability is feasible in mathematics, the results of this paper show that proving computational hardness is not hard in mathematics. Specifically, proving lower bounds for many problems, such as 3-SAT, can be challenging because these problems have various effective strategies available for avoiding exhaustive search. However, in cases of extremely hard examples, exhaustive search may be the only viable option, and proving its necessity becomes more straightforward. Consequently, it makes the separation between SAT (with long clauses) and 3-SAT much easier than that between 3-SAT and 2-SAT. Finally, the main results of this paper demonstrate that the fundamental difference between the syntax and the semantics revealed by G\"{o}del's results also exists in CSP and SAT.
Recent advances of data-driven machine learning have revolutionized fields like computer vision, reinforcement learning, and many scientific and engineering domains. In many real-world and scientific problems, systems that generate data are governed by physical laws. Recent work shows that it provides potential benefits for machine learning models by incorporating the physical prior and collected data, which makes the intersection of machine learning and physics become a prevailing paradigm. In this survey, we present this learning paradigm called Physics-Informed Machine Learning (PIML) which is to build a model that leverages empirical data and available physical prior knowledge to improve performance on a set of tasks that involve a physical mechanism. We systematically review the recent development of physics-informed machine learning from three perspectives of machine learning tasks, representation of physical prior, and methods for incorporating physical prior. We also propose several important open research problems based on the current trends in the field. We argue that encoding different forms of physical prior into model architectures, optimizers, inference algorithms, and significant domain-specific applications like inverse engineering design and robotic control is far from fully being explored in the field of physics-informed machine learning. We believe that this study will encourage researchers in the machine learning community to actively participate in the interdisciplinary research of physics-informed machine learning.
Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.
Classic algorithms and machine learning systems like neural networks are both abundant in everyday life. While classic computer science algorithms are suitable for precise execution of exactly defined tasks such as finding the shortest path in a large graph, neural networks allow learning from data to predict the most likely answer in more complex tasks such as image classification, which cannot be reduced to an exact algorithm. To get the best of both worlds, this thesis explores combining both concepts leading to more robust, better performing, more interpretable, more computationally efficient, and more data efficient architectures. The thesis formalizes the idea of algorithmic supervision, which allows a neural network to learn from or in conjunction with an algorithm. When integrating an algorithm into a neural architecture, it is important that the algorithm is differentiable such that the architecture can be trained end-to-end and gradients can be propagated back through the algorithm in a meaningful way. To make algorithms differentiable, this thesis proposes a general method for continuously relaxing algorithms by perturbing variables and approximating the expectation value in closed form, i.e., without sampling. In addition, this thesis proposes differentiable algorithms, such as differentiable sorting networks, differentiable renderers, and differentiable logic gate networks. Finally, this thesis presents alternative training strategies for learning with algorithms.
Despite its great success, machine learning can have its limits when dealing with insufficient training data. A potential solution is the additional integration of prior knowledge into the training process which leads to the notion of informed machine learning. In this paper, we present a structured overview of various approaches in this field. We provide a definition and propose a concept for informed machine learning which illustrates its building blocks and distinguishes it from conventional machine learning. We introduce a taxonomy that serves as a classification framework for informed machine learning approaches. It considers the source of knowledge, its representation, and its integration into the machine learning pipeline. Based on this taxonomy, we survey related research and describe how different knowledge representations such as algebraic equations, logic rules, or simulation results can be used in learning systems. This evaluation of numerous papers on the basis of our taxonomy uncovers key methods in the field of informed machine learning.
The growing energy and performance costs of deep learning have driven the community to reduce the size of neural networks by selectively pruning components. Similarly to their biological counterparts, sparse networks generalize just as well, if not better than, the original dense networks. Sparsity can reduce the memory footprint of regular networks to fit mobile devices, as well as shorten training time for ever growing networks. In this paper, we survey prior work on sparsity in deep learning and provide an extensive tutorial of sparsification for both inference and training. We describe approaches to remove and add elements of neural networks, different training strategies to achieve model sparsity, and mechanisms to exploit sparsity in practice. Our work distills ideas from more than 300 research papers and provides guidance to practitioners who wish to utilize sparsity today, as well as to researchers whose goal is to push the frontier forward. We include the necessary background on mathematical methods in sparsification, describe phenomena such as early structure adaptation, the intricate relations between sparsity and the training process, and show techniques for achieving acceleration on real hardware. We also define a metric of pruned parameter efficiency that could serve as a baseline for comparison of different sparse networks. We close by speculating on how sparsity can improve future workloads and outline major open problems in the field.
Since deep neural networks were developed, they have made huge contributions to everyday lives. Machine learning provides more rational advice than humans are capable of in almost every aspect of daily life. However, despite this achievement, the design and training of neural networks are still challenging and unpredictable procedures. To lower the technical thresholds for common users, automated hyper-parameter optimization (HPO) has become a popular topic in both academic and industrial areas. This paper provides a review of the most essential topics on HPO. The first section introduces the key hyper-parameters related to model training and structure, and discusses their importance and methods to define the value range. Then, the research focuses on major optimization algorithms and their applicability, covering their efficiency and accuracy especially for deep learning networks. This study next reviews major services and toolkits for HPO, comparing their support for state-of-the-art searching algorithms, feasibility with major deep learning frameworks, and extensibility for new modules designed by users. The paper concludes with problems that exist when HPO is applied to deep learning, a comparison between optimization algorithms, and prominent approaches for model evaluation with limited computational resources.