亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The rise of self-driving cars (SDCs) presents important safety challenges to address in dynamic environments. While field testing is essential, current methods lack diversity in assessing critical SDC scenarios. Prior research introduced simulation-based testing for SDCs, with Frenetic, a test generation approach based on Frenet space encoding, achieving a relatively high percentage of valid tests (approximately 50%) characterized by naturally smooth curves. The "minimal out-of-bound distance" is often taken as a fitness function, which we argue to be a sub-optimal metric. Instead, we show that the likelihood of leading to an out-of-bound condition can be learned by the deep-learning vanilla transformer model. We combine this "inherently learned metric" with a genetic algorithm, which has been shown to produce a high diversity of tests. To validate our approach, we conducted a large-scale empirical evaluation on a dataset comprising over 1,174 simulated test cases created to challenge the SDCs behavior. Our investigation revealed that our approach demonstrates a substantial reduction in generating non-valid test cases, increased diversity, and high accuracy in identifying safety violations during SDC test execution.

相關內容

3D occupancy prediction based on multi-sensor fusion, crucial for a reliable autonomous driving system, enables fine-grained understanding of 3D scenes. Previous fusion-based 3D occupancy predictions relied on depth estimation for processing 2D image features. However, depth estimation is an ill-posed problem, hindering the accuracy and robustness of these methods. Furthermore, fine-grained occupancy prediction demands extensive computational resources. We introduce OccFusion, a multi-modal fusion method free from depth estimation, and a corresponding point cloud sampling algorithm for dense integration of image features. Building on this, we propose an active training method and an active coarse to fine pipeline, enabling the model to adaptively learn more from complex samples and optimize predictions specifically for challenging areas such as small or overlapping objects. The active methods we propose can be naturally extended to any occupancy prediction model. Experiments on the OpenOccupancy benchmark show our method surpasses existing state-of-the-art (SOTA) multi-modal methods in IoU across all categories. Additionally, our model is more efficient during both the training and inference phases, requiring far fewer computational resources. Comprehensive ablation studies demonstrate the effectiveness of our proposed techniques.

Robotic motor control necessitates the ability to predict the dynamics of environments and interaction objects. However, advanced self-supervised pre-trained visual representations (PVRs) in robotic motor control, leveraging large-scale egocentric videos, often focus solely on learning the static content features of sampled image frames. This neglects the crucial temporal motion clues in human video data, which implicitly contain key knowledge about sequential interacting and manipulating with the environments and objects. In this paper, we present a simple yet effective robotic motor control visual pre-training framework that jointly performs spatiotemporal predictive learning utilizing large-scale video data, termed as STP. Our STP samples paired frames from video clips. It adheres to two key designs in a multi-task learning manner. First, we perform spatial prediction on the masked current frame for learning content features. Second, we utilize the future frame with an extremely high masking ratio as a condition, based on the masked current frame, to conduct temporal prediction of future frame for capturing motion features. These efficient designs ensure that our representation focusing on motion information while capturing spatial details. We carry out the largest-scale evaluation of PVRs for robotic motor control to date, which encompasses 21 tasks within a real-world Franka robot arm and 5 simulated environments. Extensive experiments demonstrate the effectiveness of STP as well as unleash its generality and data efficiency by further post-pre-training and hybrid pre-training.

The prevalence of 3D printing poses a significant risk to public safety, as any individual with internet access and a commodity printer is able to produce untraceable firearms, keys, counterfeit products, etc. To aid government authorities in combating these new security threats, several approaches have been taken to tag 3D-prints with identifying information. Known as fingerprints, this information is written into the object using various bit embedding techniques; examples include varying the height of the molten thermoplastic layers, and depositing metallic powder with different magnetic properties. Yet, the practicality of theses techniques in real-world forensic settings is hindered by the adversarial nature of this problem. That is, the 3D-printing process is out of reach of any law enforcement agencies; it is the adversary who controls all aspects of printing and possesses the printed object. To combat these threats, law enforcement agencies can regulate the manufacturing of 3D printers, on which they may enforce a fingerprinting scheme, and collect adversarially tampered remains (e.g., fragments of a broken 3D-printed firearm) during forensic investigation. Therefore, it is important to devise fingerprinting techniques so that the fingerprint could be extracted even if printing is carried out by the adversary. To this end, we present SIDE (Secure Information Embedding and Extraction), a fingerprinting framework that tackles the adversarial nature of forensic fingerprinting in 3D prints by offering both secure information embedding and secure information extraction.

We propose Value Explicit Pretraining (VEP), a method that learns generalizable representations for transfer reinforcement learning. VEP enables learning of new tasks that share similar objectives as previously learned tasks, by learning an encoder for objective-conditioned representations, irrespective of appearance changes and environment dynamics. To pre-train the encoder from a sequence of observations, we use a self-supervised contrastive loss that results in learning temporally smooth representations. VEP learns to relate states across different tasks based on the Bellman return estimate that is reflective of task progress. Experiments using a realistic navigation simulator and Atari benchmark show that the pretrained encoder produced by our method outperforms current SoTA pretraining methods on the ability to generalize to unseen tasks. VEP achieves up to a 2 times improvement in rewards on Atari and visual navigation, and up to a 3 times improvement in sample efficiency. For videos of policy performance visit our //sites.google.com/view/value-explicit-pretraining/

Ensuring robot safety in complex environments is a difficult task due to actuation limits, such as torque bounds. This paper presents a safety-critical control framework that leverages learning-based switching between multiple backup controllers to formally guarantee safety under bounded control inputs while satisfying driver intention. By leveraging backup controllers designed to uphold safety and input constraints, backup control barrier functions (BCBFs) construct implicitly defined control invariance sets via a feasible quadratic program (QP). However, BCBF performance largely depends on the design and conservativeness of the chosen backup controller, especially in our setting of human-driven vehicles in complex, e.g, off-road, conditions. While conservativeness can be reduced by using multiple backup controllers, determining when to switch is an open problem. Consequently, we develop a broadcast scheme that estimates driver intention and integrates BCBFs with multiple backup strategies for human-robot interaction. An LSTM classifier uses data inputs from the robot, human, and safety algorithms to continually choose a backup controller in real-time. We demonstrate our method's efficacy on a dual-track robot in obstacle avoidance scenarios. Our framework guarantees robot safety while adhering to driver intention.

Abrupt maneuvers by surrounding vehicles (SVs) can typically lead to safety concerns and affect the task efficiency of the ego vehicle (EV), especially with model uncertainties stemming from environmental disturbances. This paper presents a real-time fail-operational controller that ensures the asymptotic convergence of an uncertain EV to a safe state, while preserving task efficiency in dynamic environments. An incremental Bayesian learning approach is developed to facilitate online learning and inference of changing environmental disturbances. Leveraging disturbance quantification and constraint transformation, we develop a stochastic fail-operational barrier based on the control barrier function (CBF). With this development, the uncertain EV is able to converge asymptotically from an unsafe state to a defined safe state with probabilistic stability. Subsequently, the stochastic fail-operational barrier is integrated into an efficient fail-operational controller based on quadratic programming (QP). This controller is tailored for the EV operating under control constraints in the presence of environmental disturbances, with both safety and efficiency objectives taken into consideration. We validate the proposed framework in connected cruise control (CCC) tasks, where SVs perform aggressive driving maneuvers. The simulation results demonstrate that our method empowers the EV to swiftly return to a safe state while upholding task efficiency in real time, even under time-varying environmental disturbances.

Generating safety-critical scenarios is essential for testing and verifying the safety of autonomous vehicles. Traditional optimization techniques suffer from the curse of dimensionality and limit the search space to fixed parameter spaces. To address these challenges, we propose a deep reinforcement learning approach that generates scenarios by sequential editing, such as adding new agents or modifying the trajectories of the existing agents. Our framework employs a reward function consisting of both risk and plausibility objectives. The plausibility objective leverages generative models, such as a variational autoencoder, to learn the likelihood of the generated parameters from the training datasets; It penalizes the generation of unlikely scenarios. Our approach overcomes the dimensionality challenge and explores a wide range of safety-critical scenarios. Our evaluation demonstrates that the proposed method generates safety-critical scenarios of higher quality compared with previous approaches.

The safety of autonomous vehicles (AV) has been a long-standing top concern, stemming from the absence of rare and safety-critical scenarios in the long-tail naturalistic driving distribution. To tackle this challenge, a surge of research in scenario-based autonomous driving has emerged, with a focus on generating high-risk driving scenarios and applying them to conduct safety-critical testing of AV models. However, limited work has been explored on the reuse of these extensive scenarios to iteratively improve AV models. Moreover, it remains intractable and challenging to filter through gigantic scenario libraries collected from other AV models with distinct behaviors, attempting to extract transferable information for current AV improvement. Therefore, we develop a continual driving policy optimization framework featuring Closed-Loop Individualized Curricula (CLIC), which we factorize into a set of standardized sub-modules for flexible implementation choices: AV Evaluation, Scenario Selection, and AV Training. CLIC frames AV Evaluation as a collision prediction task, where it estimates the chance of AV failures in these scenarios at each iteration. Subsequently, by re-sampling from historical scenarios based on these failure probabilities, CLIC tailors individualized curricula for downstream training, aligning them with the evaluated capability of AV. Accordingly, CLIC not only maximizes the utilization of the vast pre-collected scenario library for closed-loop driving policy optimization but also facilitates AV improvement by individualizing its training with more challenging cases out of those poorly organized scenarios. Experimental results clearly indicate that CLIC surpasses other curriculum-based training strategies, showing substantial improvement in managing risky scenarios, while still maintaining proficiency in handling simpler cases.

The discovery of "jailbreaks" to bypass safety filters of Large Language Models (LLMs) and harmful responses have encouraged the community to implement safety measures. One major safety measure is to proactively test the LLMs with jailbreaks prior to the release. Therefore, such testing will require a method that can generate jailbreaks massively and efficiently. In this paper, we follow a novel yet intuitive strategy to generate jailbreaks in the style of the human generation. We propose a role-playing system that assigns four different roles to the user LLMs to collaborate on new jailbreaks. Furthermore, we collect existing jailbreaks and split them into different independent characteristics using clustering frequency and semantic patterns sentence by sentence. We organize these characteristics into a knowledge graph, making them more accessible and easier to retrieve. Our system of different roles will leverage this knowledge graph to generate new jailbreaks, which have proved effective in inducing LLMs to generate unethical or guideline-violating responses. In addition, we also pioneer a setting in our system that will automatically follow the government-issued guidelines to generate jailbreaks to test whether LLMs follow the guidelines accordingly. We refer to our system as GUARD (Guideline Upholding through Adaptive Role-play Diagnostics). We have empirically validated the effectiveness of GUARD on three cutting-edge open-sourced LLMs (Vicuna-13B, LongChat-7B, and Llama-2-7B), as well as a widely-utilized commercial LLM (ChatGPT). Moreover, our work extends to the realm of vision language models (MiniGPT-v2 and Gemini Vision Pro), showcasing GUARD's versatility and contributing valuable insights for the development of safer, more reliable LLM-based applications across diverse modalities.

In human-robot collaboration, there has been a trade-off relationship between the speed of collaborative robots and the safety of human workers. In our previous paper, we introduced a time-optimal path tracking algorithm designed to maximize speed while ensuring safety for human workers. This algorithm runs in real-time and provides the safe and fastest control input for every cycle with respect to ISO standards. However, true optimality has not been achieved due to inaccurate distance computation resulting from conservative model simplification. To attain true optimality, we require a method that can compute distances 1. at many robot configurations to examine along a trajectory 2. in real-time for online robot control 3. as precisely as possible for optimal control. In this paper, we propose a batched, fast and precise distance checking method based on precomputed link-local SDFs. Our method can check distances for 500 waypoints along a trajectory within less than 1 millisecond using a GPU at runtime, making it suited for time-critical robotic control. Additionally, a neural approximation has been proposed to accelerate preprocessing by a factor of 2. Finally, we experimentally demonstrate that our method can navigate a 6-DoF robot earlier than a geometric-primitives-based distance checker in a dynamic and collaborative environment.

北京阿比特科技有限公司