亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Spectral clustering has been widely used for community detection in network sciences. While its empirical successes are well-documented, a clear theoretical understanding, particularly for sparse networks where degrees are much smaller than $\log n$, remains unclear. In this paper, we address this significant gap by demonstrating that spectral clustering offers exponentially small error rates when applied to sparse networks under Stochastic Block Models. Our analysis provides sharp characterizations of its performance, backed by matching upper and lower bounds possessing an identical exponent with the same leading constant. The key to our results is a novel truncated $\ell_2$ perturbation analysis for eigenvectors, coupled with a new analysis idea of eigenvectors truncation.

相關內容

Optimizing static risk-averse objectives in Markov decision processes is difficult because they do not admit standard dynamic programming equations common in Reinforcement Learning (RL) algorithms. Dynamic programming decompositions that augment the state space with discrete risk levels have recently gained popularity in the RL community. Prior work has shown that these decompositions are optimal when the risk level is discretized sufficiently. However, we show that these popular decompositions for Conditional-Value-at-Risk (CVaR) and Entropic-Value-at-Risk (EVaR) are inherently suboptimal regardless of the discretization level. In particular, we show that a saddle point property assumed to hold in prior literature may be violated. However, a decomposition does hold for Value-at-Risk and our proof demonstrates how this risk measure differs from CVaR and EVaR. Our findings are significant because risk-averse algorithms are used in high-stake environments, making their correctness much more critical.

Code writing is repetitive and predictable, inspiring us to develop various code intelligence techniques. This survey focuses on code search, that is, to retrieve code that matches a given query by effectively capturing the semantic similarity between the query and code. Deep learning, being able to extract complex semantics information, has achieved great success in this field. Recently, various deep learning methods, such as graph neural networks and pretraining models, have been applied to code search with significant progress. Deep learning is now the leading paradigm for code search. In this survey, we provide a comprehensive overview of deep learning-based code search. We review the existing deep learning-based code search framework which maps query/code to vectors and measures their similarity. Furthermore, we propose a new taxonomy to illustrate the state-of-the-art deep learning-based code search in a three-steps process: query semantics modeling, code semantics modeling, and matching modeling which involves the deep learning model training. Finally, we suggest potential avenues for future research in this promising field.

Unknown-unknowns are operational scenarios in systems that are not accounted for in the design and test phase. In such scenarios, the operational behavior of the Human-in-loop (HIL) Human-in-Plant (HIP) systems is not guaranteed to meet requirements such as safety and efficacy. We propose a novel framework for analyzing the operational output characteristics of safety-critical HIL-HIP systems that can discover unknown-unknown scenarios and evaluate potential safety hazards. We propose dynamics-induced hybrid recurrent neural networks (DiH-RNN) to mine a physics-guided surrogate model (PGSM) that checks for deviation of the cyber-physical system (CPS) from safety-certified operational characteristics. The PGSM enables early detection of unknown-unknowns based on the physical laws governing the system. We demonstrate the detection of operational changes in an Artificial Pancreas(AP) due to unknown insulin cartridge errors.

Edge devices have typically been used for DNN inferencing. The increase in the compute power of accelerated edges is leading to their use in DNN training also. As privacy becomes a concern on multi-tenant edge devices, Docker containers provide a lightweight virtualization mechanism to sandbox models. But their overheads for edge devices are not yet explored. In this work, we study the impact of containerized DNN inference and training workloads on an NVIDIA AGX Orin edge device and contrast it against bare metal execution on running time, CPU, GPU and memory utilization, and energy consumption. Our analysis provides several interesting insights on these overheads.

Transformer neural networks can exhibit a surprising capacity for in-context learning (ICL) despite not being explicitly trained for it. Prior work has provided a deeper understanding of how ICL emerges in transformers, e.g. through the lens of mechanistic interpretability, Bayesian inference, or by examining the distributional properties of training data. However, in each of these cases, ICL is treated largely as a persistent phenomenon; namely, once ICL emerges, it is assumed to persist asymptotically. Here, we show that the emergence of ICL during transformer training is, in fact, often transient. We train transformers on synthetic data designed so that both ICL and in-weights learning (IWL) strategies can lead to correct predictions. We find that ICL first emerges, then disappears and gives way to IWL, all while the training loss decreases, indicating an asymptotic preference for IWL. The transient nature of ICL is observed in transformers across a range of model sizes and datasets, raising the question of how much to "overtrain" transformers when seeking compact, cheaper-to-run models. We find that L2 regularization may offer a path to more persistent ICL that removes the need for early stopping based on ICL-style validation tasks. Finally, we present initial evidence that ICL transience may be caused by competition between ICL and IWL circuits.

One of the motivations for explainable AI is to allow humans to make better and more informed decisions regarding the use and deployment of AI models. But careful evaluations are needed to assess whether this expectation has been fulfilled. Current evaluations mainly focus on algorithmic properties of explanations, and those that involve human subjects often employ subjective questions to test human's perception of explanation usefulness, without being grounded in objective metrics and measurements. In this work, we evaluate whether explanations can improve human decision-making in practical scenarios of machine learning model development. We conduct a mixed-methods user study involving image data to evaluate saliency maps generated by SmoothGrad, GradCAM, and an oracle explanation on two tasks: model selection and counterfactual simulation. To our surprise, we did not find evidence of significant improvement on these tasks when users were provided with any of the saliency maps, even the synthetic oracle explanation designed to be simple to understand and highly indicative of the answer. Nonetheless, explanations did help users more accurately describe the models. These findings suggest caution regarding the usefulness and potential for misunderstanding in saliency-based explanations.

Graph neural networks (GNNs) have been demonstrated to be a powerful algorithmic model in broad application fields for their effectiveness in learning over graphs. To scale GNN training up for large-scale and ever-growing graphs, the most promising solution is distributed training which distributes the workload of training across multiple computing nodes. However, the workflows, computational patterns, communication patterns, and optimization techniques of distributed GNN training remain preliminarily understood. In this paper, we provide a comprehensive survey of distributed GNN training by investigating various optimization techniques used in distributed GNN training. First, distributed GNN training is classified into several categories according to their workflows. In addition, their computational patterns and communication patterns, as well as the optimization techniques proposed by recent work are introduced. Second, the software frameworks and hardware platforms of distributed GNN training are also introduced for a deeper understanding. Third, distributed GNN training is compared with distributed training of deep neural networks, emphasizing the uniqueness of distributed GNN training. Finally, interesting issues and opportunities in this field are discussed.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

Spectral clustering (SC) is a popular clustering technique to find strongly connected communities on a graph. SC can be used in Graph Neural Networks (GNNs) to implement pooling operations that aggregate nodes belonging to the same cluster. However, the eigendecomposition of the Laplacian is expensive and, since clustering results are graph-specific, pooling methods based on SC must perform a new optimization for each new sample. In this paper, we propose a graph clustering approach that addresses these limitations of SC. We formulate a continuous relaxation of the normalized minCUT problem and train a GNN to compute cluster assignments that minimize this objective. Our GNN-based implementation is differentiable, does not require to compute the spectral decomposition, and learns a clustering function that can be quickly evaluated on out-of-sample graphs. From the proposed clustering method, we design a graph pooling operator that overcomes some important limitations of state-of-the-art graph pooling techniques and achieves the best performance in several supervised and unsupervised tasks.

北京阿比特科技有限公司