LLMs usually exhibit limitations in their ability to incorporate new knowledge, the generation of hallucinations, and the transparency of their decision-making process. In this paper, we explore how to prompt LLMs with knowledge graphs (KG), working as a remedy to engage LLMs with up-to-date knowledge and elicit the reasoning pathways from LLMs. Specifically, we build a prompting pipeline that endows LLMs with the capability of comprehending KG inputs and inferring with a combined implicit knowledge and the retrieved external knowledge. In addition, we investigate eliciting the mind map on which LLMs perform the reasoning and generate the answers. It is identified that the produced mind map exhibits the reasoning pathways of LLMs grounded on the ontology of knowledge, hence bringing the prospects of probing and gauging LLM inference in production. The experiments on three question & answering datasets also show that MindMap prompting leads to a striking empirical gain. For instance, prompting a GPT-3.5 with MindMap yields an overwhelming performance over GPT-4 consistently. We also demonstrate that with structured facts retrieved from KG, MindMap can outperform a series of prompting-with-document-retrieval methods, benefiting from more accurate, concise, and comprehensive knowledge from KGs.
The ability to derive underlying principles from a handful of observations and then generalize to novel situations -- known as inductive reasoning -- is central to human intelligence. Prior work suggests that language models (LMs) often fall short on inductive reasoning, despite achieving impressive success on research benchmarks. In this work, we conduct a systematic study of the inductive reasoning capabilities of LMs through iterative hypothesis refinement, a technique that more closely mirrors the human inductive process than standard input-output prompting. Iterative hypothesis refinement employs a three-step process: proposing, selecting, and refining hypotheses in the form of textual rules. By examining the intermediate rules, we observe that LMs are phenomenal hypothesis proposers (i.e., generating candidate rules), and when coupled with a (task-specific) symbolic interpreter that is able to systematically filter the proposed set of rules, this hybrid approach achieves strong results across inductive reasoning benchmarks that require inducing causal relations, language-like instructions, and symbolic concepts. However, they also behave as puzzling inductive reasoners, showing notable performance gaps in rule induction (i.e., identifying plausible rules) and rule application (i.e., applying proposed rules to instances), suggesting that LMs are proposing hypotheses without being able to actually apply the rules. Through empirical and human analyses, we further reveal several discrepancies between the inductive reasoning processes of LMs and humans, shedding light on both the potentials and limitations of using LMs in inductive reasoning tasks.
Semantic communication aims to transmit meaningful and effective information rather than focusing on individual symbols or bits, resulting in benefits like reduced latency, bandwidth usage, and higher throughput compared to traditional communication. However, semantic communication poses significant challenges due to the need for universal metrics for benchmarking the joint effects of semantic information loss and practical energy consumption. This research presents a novel multi-objective loss function named "Energy-Optimized Semantic Loss" (EOSL), addressing the challenge of balancing semantic information loss and energy consumption. Through comprehensive experiments on transformer models, including CPU and GPU energy usage, it is demonstrated that EOSL-based encoder model selection can save up to 90\% of energy while achieving a 44\% improvement in semantic similarity performance during inference in this experiment. This work paves the way for energy-efficient neural network selection and the development of greener semantic communication architectures.
As scientific literature has grown exponentially, researchers often rely on paper triaging strategies such as browsing abstracts before deciding to delve into a paper's full text. However, when an abstract is insufficient, researchers are required to navigate an informational chasm between 150-word abstracts and 10,000-word papers. To bridge that gap, we introduce the idea of recursively expandable summaries and present Qlarify, an interactive system that allows users to recursively expand an abstract by progressively incorporating additional information from a paper's full text. Starting from an abstract, users can brush over summary text to specify targeted information needs or select AI-suggested entities in the text. Responses are then generated on-demand by an LLM and appear in the form of a fluid, threaded expansion of the existing text. Each generated summary can be efficiently verified through attribution to a relevant source-passage in the paper. Through an interview study (n=9) and a field deployment (n=275) at a research conference, we use Qlarify as a technology probe to elaborate upon the expandable summaries design space, highlight how scholars benefit from Qlarify's expandable abstracts, and identify future opportunities to support low-effort and just-in-time exploration of scientific documents $\unicode{x2013}$ and other information spaces $\unicode{x2013}$ through LLM-powered interactions.
Video moment retrieval pursues an efficient and generalized solution to identify the specific temporal segments within an untrimmed video that correspond to a given language description. To achieve this goal, we provide a generative diffusion-based framework called MomentDiff, which simulates a typical human retrieval process from random browsing to gradual localization. Specifically, we first diffuse the real span to random noise, and learn to denoise the random noise to the original span with the guidance of similarity between text and video. This allows the model to learn a mapping from arbitrary random locations to real moments, enabling the ability to locate segments from random initialization. Once trained, MomentDiff could sample random temporal segments as initial guesses and iteratively refine them to generate an accurate temporal boundary. Different from discriminative works (e.g., based on learnable proposals or queries), MomentDiff with random initialized spans could resist the temporal location biases from datasets. To evaluate the influence of the temporal location biases, we propose two anti-bias datasets with location distribution shifts, named Charades-STA-Len and Charades-STA-Mom. The experimental results demonstrate that our efficient framework consistently outperforms state-of-the-art methods on three public benchmarks, and exhibits better generalization and robustness on the proposed anti-bias datasets. The code, model, and anti-bias evaluation datasets are available at //github.com/IMCCretrieval/MomentDiff.
Evaluating the factuality of long-form text generated by large language models (LMs) is non-trivial because (1) generations often contain a mixture of supported and unsupported pieces of information, making binary judgments of quality inadequate, and (2) human evaluation is time-consuming and costly. In this paper, we introduce FACTSCORE, a new evaluation that breaks a generation into a series of atomic facts and computes the percentage of atomic facts supported by a reliable knowledge source. We conduct an extensive human evaluation to obtain FACTSCOREs of people biographies generated by several state-of-the-art commercial LMs -- InstructGPT, ChatGPT, and the retrieval-augmented PerplexityAI -- and report new analysis demonstrating the need for such a fine-grained score (e.g., ChatGPT only achieves 58%). Since human evaluation is costly, we also introduce an automated model that estimates FACTSCORE using retrieval and a strong language model, with less than a 2% error rate. Finally, we use this automated metric to evaluate 6,500 generations from a new set of 13 recent LMs that would have cost $26K if evaluated by humans, with various findings: GPT-4 and ChatGPT are more factual than public models, and Vicuna and Alpaca are some of the best public models. FACTSCORE is available for public use via `pip install factscore`.
The exponential growth in scholarly publications necessitates advanced tools for efficient article retrieval, especially in interdisciplinary fields where diverse terminologies are used to describe similar research. Traditional keyword-based search engines often fall short in assisting users who may not be familiar with specific terminologies. To address this, we present a knowledge graph-based paper search engine for biomedical research to enhance the user experience in discovering relevant queries and articles. The system, dubbed DiscoverPath, employs Named Entity Recognition (NER) and part-of-speech (POS) tagging to extract terminologies and relationships from article abstracts to create a KG. To reduce information overload, DiscoverPath presents users with a focused subgraph containing the queried entity and its neighboring nodes and incorporates a query recommendation system, enabling users to iteratively refine their queries. The system is equipped with an accessible Graphical User Interface that provides an intuitive visualization of the KG, query recommendations, and detailed article information, enabling efficient article retrieval, thus fostering interdisciplinary knowledge exploration. DiscoverPath is open-sourced at //github.com/ynchuang/DiscoverPath.
The execution of deep neural network (DNN) algorithms suffers from significant bottlenecks due to the separation of the processing and memory units in traditional computer systems. Emerging memristive computing systems introduce an in situ approach that overcomes this bottleneck. The non-volatility of memristive devices, however, may expose the DNN weights stored in memristive crossbars to potential theft attacks. Therefore, this paper proposes a two-dimensional permutation-based protection (TDPP) method that thwarts such attacks. We first introduce the underlying concept that motivates the TDPP method: permuting both the rows and columns of the DNN weight matrices. This contrasts with previous methods, which focused solely on permuting a single dimension of the weight matrices, either the rows or columns. While it's possible for an adversary to access the matrix values, the original arrangement of rows and columns in the matrices remains concealed. As a result, the extracted DNN model from the accessed matrix values would fail to operate correctly. We consider two different memristive computing systems (designed for layer-by-layer and layer-parallel processing, respectively) and demonstrate the design of the TDPP method that could be embedded into the two systems. Finally, we present a security analysis. Our experiments demonstrate that TDPP can achieve comparable effectiveness to prior approaches, with a high level of security when appropriately parameterized. In addition, TDPP is more scalable than previous methods and results in reduced area and power overheads. The area and power are reduced by, respectively, 1218$\times$ and 2815$\times$ for the layer-by-layer system and by 178$\times$ and 203$\times$ for the layer-parallel system compared to prior works.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.
In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.