Considering voting rules based on evaluation inputs rather than preference rankings modifies the paradigm of probabilistic studies of voting procedures. This article proposes several simulation models for generating evaluation-based voting inputs. These models can cope with dependent and non identical marginal distributions of the evaluations received by the candidates. A last part is devoted to fitting these models to real data sets.
Recent innovations from machine learning allow for data unfolding, without binning and including correlations across many dimensions. We describe a set of known, upgraded, and new methods for ML-based unfolding. The performance of these approaches are evaluated on the same two datasets. We find that all techniques are capable of accurately reproducing the particle-level spectra across complex observables. Given that these approaches are conceptually diverse, they offer an exciting toolkit for a new class of measurements that can probe the Standard Model with an unprecedented level of detail and may enable sensitivity to new phenomena.
This paper tackles the problem of constructing Bezout matrices for Newton polynomials in a basis-preserving approach that operates directly with the given Newton basis, thus avoiding the need for transformation from Newton basis to monomial basis. This approach significantly reduces the computational cost and also mitigates numerical instability caused by basis transformation. For this purpose, we investigate the internal structure of Bezout matrices in Newton basis and design a basis-preserving algorithm that generates the Bezout matrix in the specified basis used to formulate the input polynomials. Furthermore, we show an application of the proposed algorithm on constructing confederate resultant matrices for Newton polynomials. Experimental results demonstrate that the proposed methods perform superior to the basis-transformation-based ones.
We develop a conformal inference method to construct joint confidence regions for structured groups of missing entries within a sparsely observed matrix. This method is useful to provide reliable uncertainty estimation for group-level collaborative filtering; for example, it can be applied to help suggest a movie for a group of friends to watch together. Unlike standard conformal techniques, which make inferences for one individual at a time, our method achieves stronger group-level guarantees by carefully assembling a structured calibration data set mimicking the patterns expected among the test group of interest. We propose a generalized weighted conformalization framework to deal with the lack of exchangeability arising from such structured calibration, and in this process we introduce several innovations to overcome computational challenges. The practicality and effectiveness of our method are demonstrated through extensive numerical experiments and an analysis of the MovieLens 100K data set.
We consider a graph coloring algorithm that processes vertices in order taken uniformly at random and assigns colors to them using First-Fit strategy. We show that this algorithm uses, in expectation, at most $(\frac{1}{2} + o(1))\cdot \ln n \,/\, \ln\ln n$ different colors to color any forest with $n$ vertices. We also construct a family of forests that shows that this bound is best possible.
In the era of data explosion, statisticians have been developing interpretable and computationally efficient statistical methods to measure latent factors (e.g., skills, abilities, and personalities) using large-scale assessment data. In addition to understanding the latent information, the covariate effect on responses controlling for latent factors is also of great scientific interest and has wide applications, such as evaluating the fairness of educational testing, where the covariate effect reflects whether a test question is biased toward certain individual characteristics (e.g., gender and race) taking into account their latent abilities. However, the large sample size, substantial covariate dimension, and great test length pose challenges to developing efficient methods and drawing valid inferences. Moreover, to accommodate the commonly encountered discrete types of responses, nonlinear latent factor models are often assumed, bringing further complexity to the problem. To address these challenges, we consider a covariate-adjusted generalized factor model and develop novel and interpretable conditions to address the identifiability issue. Based on the identifiability conditions, we propose a joint maximum likelihood estimation method and establish estimation consistency and asymptotic normality results for the covariate effects under a practical yet challenging asymptotic regime. Furthermore, we derive estimation and inference results for latent factors and the factor loadings. We illustrate the finite sample performance of the proposed method through extensive numerical studies and an application to an educational assessment dataset obtained from the Programme for International Student Assessment (PISA).
Recent studies indicate that the noise characteristics of phasor measurement units (PMUs) can be more accurately described by non-Gaussian distributions. Consequently, estimation techniques based on Gaussian noise assumptions may produce poor results with PMU data. This paper considers the PMU based line parameter estimation (LPE) problem, and investigates the performance of four state-of-the-art techniques in solving this problem in presence of non-Gaussian measurement noise. The rigorous comparative analysis highlights the merits and demerits of each technique w.r.t. the LPE problem, and identifies conditions under which they are expected to give good results.
WhatsApp has become a pivotal communication tool in India, transcending cultural boundaries and deeply integrating into the nation's digital landscape. Meta's introduction of WhatsApp for Business aligns seamlessly with the platform's popularity, offering businesses a crucial tool. However, the monetization plans pose challenges, particularly for smaller businesses, in balancing revenue goals with accessibility. This study, employing discourse analysis, examines Meta's infrastructuring of WhatsApp in India, emphasizing the dynamic interplay of technological, social, and cultural dimensions. Consequently, it highlights potential power differences caused by the deployment of WhatsApp for Business followed by its gradual but significant modifications, encouraging scholars to investigate the implications and ethics of rapid technological changes, particularly for marginalized users.
Reasoning, a crucial ability for complex problem-solving, plays a pivotal role in various real-world settings such as negotiation, medical diagnosis, and criminal investigation. It serves as a fundamental methodology in the field of Artificial General Intelligence (AGI). With the ongoing development of foundation models, e.g., Large Language Models (LLMs), there is a growing interest in exploring their abilities in reasoning tasks. In this paper, we introduce seminal foundation models proposed or adaptable for reasoning, highlighting the latest advancements in various reasoning tasks, methods, and benchmarks. We then delve into the potential future directions behind the emergence of reasoning abilities within foundation models. We also discuss the relevance of multimodal learning, autonomous agents, and super alignment in the context of reasoning. By discussing these future research directions, we hope to inspire researchers in their exploration of this field, stimulate further advancements in reasoning with foundation models, and contribute to the development of AGI.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.