The introduction and advancements in Local Differential Privacy (LDP) variants have become a cornerstone in addressing the privacy concerns associated with the vast data produced by smart devices, which forms the foundation for data-driven decision-making in crowdsensing. While harnessing the power of these immense data sets can offer valuable insights, it simultaneously poses significant privacy risks for the users involved. LDP, a distinguished privacy model with a decentralized architecture, stands out for its capability to offer robust privacy assurances for individual users during data collection and analysis. The essence of LDP is its method of locally perturbing each user's data on the client-side before transmission to the server-side, safeguarding against potential privacy breaches at both ends. This article offers an in-depth exploration of LDP, emphasizing its models, its myriad variants, and the foundational structure of LDP algorithms.
Counterfactual inference aims to answer retrospective "what if" questions and thus belongs to the most fine-grained type of inference in Pearl's causality ladder. Existing methods for counterfactual inference with continuous outcomes aim at point identification and thus make strong and unnatural assumptions about the underlying structural causal model. In this paper, we relax these assumptions and aim at partial counterfactual identification of continuous outcomes, i.e., when the counterfactual query resides in an ignorance interval with informative bounds. We prove that, in general, the ignorance interval of the counterfactual queries has non-informative bounds, already when functions of structural causal models are continuously differentiable. As a remedy, we propose a novel sensitivity model called Curvature Sensitivity Model. This allows us to obtain informative bounds by bounding the curvature of level sets of the functions. We further show that existing point counterfactual identification methods are special cases of our Curvature Sensitivity Model when the bound of the curvature is set to zero. We then propose an implementation of our Curvature Sensitivity Model in the form of a novel deep generative model, which we call Augmented Pseudo-Invertible Decoder. Our implementation employs (i) residual normalizing flows with (ii) variational augmentations. We empirically demonstrate the effectiveness of our Augmented Pseudo-Invertible Decoder. To the best of our knowledge, ours is the first partial identification model for Markovian structural causal models with continuous outcomes.
Membership inference attacks (MIA) can reveal whether a particular data point was part of the training dataset, potentially exposing sensitive information about individuals. This article explores the fundamental statistical limitations associated with MIAs on machine learning models. More precisely, we first derive the statistical quantity that governs the effectiveness and success of such attacks. Then, we investigate several situations for which we provide bounds on this quantity of interest. This allows us to infer the accuracy of potential attacks as a function of the number of samples and other structural parameters of learning models, which in some cases can be directly estimated from the dataset.
We present Consistent Assignment of Views over Random Partitions (CARP), a self-supervised clustering method for representation learning of visual features. CARP learns prototypes in an end-to-end online fashion using gradient descent without additional non-differentiable modules to solve the cluster assignment problem. CARP optimizes a new pretext task based on random partitions of prototypes that regularizes the model and enforces consistency between views' assignments. Additionally, our method improves training stability and prevents collapsed solutions in joint-embedding training. Through an extensive evaluation, we demonstrate that CARP's representations are suitable for learning downstream tasks. We evaluate CARP's representations capabilities in 17 datasets across many standard protocols, including linear evaluation, few-shot classification, k-NN, k-means, image retrieval, and copy detection. We compare CARP performance to 11 existing self-supervised methods. We extensively ablate our method and demonstrate that our proposed random partition pretext task improves the quality of the learned representations by devising multiple random classification tasks. In transfer learning tasks, CARP achieves the best performance on average against many SSL methods trained for a longer time.
Building upon the considerable advances in Large Language Models (LLMs), we are now equipped to address more sophisticated tasks demanding a nuanced understanding of cross-cultural contexts. A key example is recipe adaptation, which goes beyond simple translation to include a grasp of ingredients, culinary techniques, and dietary preferences specific to a given culture. We introduce a new task involving the translation and cultural adaptation of recipes between Chinese and English-speaking cuisines. To support this investigation, we present CulturalRecipes, a unique dataset comprised of automatically paired recipes written in Mandarin Chinese and English. This dataset is further enriched with a human-written and curated test set. In this intricate task of cross-cultural recipe adaptation, we evaluate the performance of various methods, including GPT-4 and other LLMs, traditional machine translation, and information retrieval techniques. Our comprehensive analysis includes both automatic and human evaluation metrics. While GPT-4 exhibits impressive abilities in adapting Chinese recipes into English, it still lags behind human expertise when translating English recipes into Chinese. This underscores the multifaceted nature of cultural adaptations. We anticipate that these insights will significantly contribute to future research on culturally-aware language models and their practical application in culturally diverse contexts.
A common way of exposing functionality in contemporary systems is by providing a Web-API based on the REST API architectural guidelines. To describe REST APIs, the industry standard is currently OpenAPI-specifications. Test generation and fuzzing methods targeting OpenAPI-described REST APIs have been a very active research area in recent years. An open research challenge is to aid users in better understanding their API, in addition to finding faults and to cover all the code. In this paper, we address this challenge by proposing a set of behavioural properties, common to REST APIs, which are used to generate examples of behaviours that these APIs exhibit. These examples can be used both (i) to further the understanding of the API and (ii) as a source of automatic test cases. Our evaluation shows that our approach can generate examples deemed relevant for understanding the system and for a source of test generation by practitioners. In addition, we show that basing test generation on behavioural properties provides tests that are less dependent on the state of the system, while at the same time yielding a similar code coverage as state-of-the-art methods in REST API fuzzing in a given time limit.
Part-prototype networks (e.g., ProtoPNet, ProtoTree, and ProtoPool) have attracted broad research interest for their intrinsic interpretability and comparable accuracy to non-interpretable counterparts. However, recent works find that the interpretability from prototypes is fragile, due to the semantic gap between the similarities in the feature space and that in the input space. In this work, we strive to address this challenge by making the first attempt to quantitatively and objectively evaluate the interpretability of the part-prototype networks. Specifically, we propose two evaluation metrics, termed as consistency score and stability score, to evaluate the explanation consistency across images and the explanation robustness against perturbations, respectively, both of which are essential for explanations taken into practice. Furthermore, we propose an elaborated part-prototype network with a shallow-deep feature alignment (SDFA) module and a score aggregation (SA) module to improve the interpretability of prototypes. We conduct systematical evaluation experiments and provide substantial discussions to uncover the interpretability of existing part-prototype networks. Experiments on three benchmarks across nine architectures demonstrate that our model achieves significantly superior performance to the state of the art, in both the accuracy and interpretability. Our code is available at //github.com/hqhQAQ/EvalProtoPNet.
This study enhances option pricing by presenting unique pricing model fractional order Black-Scholes-Merton (FOBSM) which is based on the Black-Scholes-Merton (BSM) model. The main goal is to improve the precision and authenticity of option pricing, matching them more closely with the financial landscape. The approach integrates the strengths of both the BSM and neural network (NN) with complex diffusion dynamics. This study emphasizes the need to take fractional derivatives into account when analyzing financial market dynamics. Since FOBSM captures memory characteristics in sequential data, it is better at simulating real-world systems than integer-order models. Findings reveals that in complex diffusion dynamics, this hybridization approach in option pricing improves the accuracy of price predictions. the key contribution of this work lies in the development of a novel option pricing model (FOBSM) that leverages fractional calculus and neural networks to enhance accuracy in capturing complex diffusion dynamics and memory effects in financial data.
Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.
Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.
We present a monocular Simultaneous Localization and Mapping (SLAM) using high level object and plane landmarks, in addition to points. The resulting map is denser, more compact and meaningful compared to point only SLAM. We first propose a high order graphical model to jointly infer the 3D object and layout planes from single image considering occlusions and semantic constraints. The extracted cuboid object and layout planes are further optimized in a unified SLAM framework. Objects and planes can provide more semantic constraints such as Manhattan and object supporting relationships compared to points. Experiments on various public and collected datasets including ICL NUIM and TUM mono show that our algorithm can improve camera localization accuracy compared to state-of-the-art SLAM and also generate dense maps in many structured environments.