亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Going beyond mere fine-tuning of vision-language models (VLMs), learnable prompt tuning has emerged as a promising, resource-efficient alternative. Despite their potential, effectively learning prompts faces the following challenges: (i) training in a low-shot scenario results in overfitting, limiting adaptability, and yielding weaker performance on newer classes or datasets; (ii) prompt-tuning's efficacy heavily relies on the label space, with decreased performance in large class spaces, signaling potential gaps in bridging image and class concepts. In this work, we investigate whether better text semantics can help address these concerns. In particular, we introduce a prompt-tuning method that leverages class descriptions obtained from Large Language Models (LLMs). These class descriptions are used to bridge image and text modalities. Our approach constructs part-level description-guided image and text features, which are subsequently aligned to learn more generalizable prompts. Our comprehensive experiments conducted across 11 benchmark datasets show that our method outperforms established methods, demonstrating substantial improvements.

相關內容

Knowledge editing techniques have been increasingly adopted to efficiently correct the false or outdated knowledge in Large Language Models (LLMs), due to the high cost of retraining from scratch. Meanwhile, one critical but under-explored question is: can knowledge editing be used to inject harm into LLMs? In this paper, we propose to reformulate knowledge editing as a new type of safety threat for LLMs, namely Editing Attack, and conduct a systematic investigation with a newly constructed dataset EditAttack. Specifically, we focus on two typical safety risks of Editing Attack including Misinformation Injection and Bias Injection. For the risk of misinformation injection, we first categorize it into commonsense misinformation injection and long-tail misinformation injection. Then, we find that editing attacks can inject both types of misinformation into LLMs, and the effectiveness is particularly high for commonsense misinformation injection. For the risk of bias injection, we discover that not only can biased sentences be injected into LLMs with high effectiveness, but also one single biased sentence injection can cause a bias increase in general outputs of LLMs, which are even highly irrelevant to the injected sentence, indicating a catastrophic impact on the overall fairness of LLMs. Then, we further illustrate the high stealthiness of editing attacks, measured by their impact on the general knowledge and reasoning capacities of LLMs, and show the hardness of defending editing attacks with empirical evidence. Our discoveries demonstrate the emerging misuse risks of knowledge editing techniques on compromising the safety alignment of LLMs.

Positional encodings (PE) for graphs are essential in constructing powerful and expressive graph neural networks and graph transformers as they effectively capture relative spatial relations between nodes. While PEs for undirected graphs have been extensively studied, those for directed graphs remain largely unexplored, despite the fundamental role of directed graphs in representing entities with strong logical dependencies, such as those in program analysis and circuit designs. This work studies the design of PEs for directed graphs that are expressive to represent desired directed spatial relations. We first propose walk profile, a generalization of walk counting sequence to directed graphs. We identify limitations in existing PE methods, including symmetrized Laplacian PE, Singular Value Decomposition PE, and Magnetic Laplacian PE, in their ability to express walk profiles. To address these limitations, we propose the Multi-q Magnetic Laplacian PE, which extends Magnetic Laplacian PE with multiple potential factors. This simple variant turns out to be capable of provably expressing walk profiles. Furthermore, we generalize previous basis-invariant and stable networks to handle complex-domain PEs decomposed from Magnetic Laplacians. Our numerical experiments demonstrate the effectiveness of Multi-q Magnetic Laplacian PE with a stable neural architecture, outperforming previous PE methods (with stable networks) on predicting directed distances/walk profiles, sorting network satisfiability, and on general circuit benchmarks. Our code is available at //github.com/Graph-COM/Multi-q-Maglap.

Recent large vision-language models such as CLIP have shown remarkable out-of-distribution (OOD) detection and generalization performance. However, their zero-shot in-distribution (ID) accuracy is often limited for downstream datasets. Recent CLIP-based fine-tuning methods such as prompt learning have demonstrated significant improvements in ID classification and OOD generalization where OOD labels are available. Nonetheless, it remains unclear whether the model is reliable to semantic shifts without OOD labels. In this paper, we aim to bridge the gap and present a comprehensive study to understand how fine-tuning impact OOD detection for few-shot downstream tasks. By framing OOD detection as multi-modal concept matching, we establish a connection between fine-tuning methods and various OOD scores. Our results suggest that a proper choice of OOD scores is essential for CLIP-based fine-tuning. In particular, the maximum concept matching (MCM) score provides a promising solution consistently. We also show that prompt learning demonstrates the state-of-the-art OOD detection performance over the zero-shot counterpart.

The Large Language Models (LLMs), such as GPT and BERT, were proposed for natural language processing (NLP) and have shown promising results as general-purpose language models. An increasing number of industry professionals and researchers are adopting LLMs for program analysis tasks. However, one significant difference between programming languages and natural languages is that a programmer has the flexibility to assign any names to variables, methods, and functions in the program, whereas a natural language writer does not. Intuitively, the quality of naming in a program affects the performance of LLMs in program analysis tasks. This paper investigates how naming affects LLMs on code analysis tasks. Specifically, we create a set of datasets with code containing nonsense or misleading names for variables, methods, and functions, respectively. We then use well-trained models (CodeBERT) to perform code analysis tasks on these datasets. The experimental results show that naming has a significant impact on the performance of code analysis tasks based on LLMs, indicating that code representation learning based on LLMs heavily relies on well-defined names in code. Additionally, we conduct a case study on some special code analysis tasks using GPT, providing further insights.

Humans appear to have a critical period (CP) for language acquisition: Second language (L2) acquisition becomes harder after early childhood, and ceasing exposure to a first language (L1) after this period (but not before) typically does not lead to substantial loss of L1 proficiency. It is unknown whether these CP effects result from innately determined brain maturation or as a stabilization of neural connections naturally induced by experience. In this study, we use language models (LMs) to test the extent to which these phenomena are peculiar to humans, or shared by a broader class of language learners. We vary the age of exposure by training LMs on language pairs in various experimental conditions, and find that LMs, which lack any direct analog to innate maturational stages, do not show CP effects when trained sequentially on L1 and L2. Our results contradict the claim that CP effects are an inevitable result of learning in statistical learners, and they are consistent with an innate mechanism for CP effects. We show that we can reverse-engineer the CP by introducing a regularizer partway through training to simulate a maturational decrease in plasticity. All in all, our results suggest that L1 learning on its own may not be enough to induce a CP, and additional engineering is necessary to make language models more cognitively plausible.

One of the major aspects contributing to the striking performance of large language models (LLMs) is the vast amount of factual knowledge accumulated during pre-training. Yet, many LLMs suffer from self-inconsistency, which raises doubts about their trustworthiness and reliability. In this paper, we focus on entity type ambiguity and analyze current state-of-the-art LLMs for their proficiency and consistency in applying their factual knowledge when prompted for entities under ambiguity. To do so, we propose an evaluation protocol that disentangles knowing from applying knowledge, and test state-of-the-art LLMs on 49 entities. Our experiments reveal that LLMs perform poorly with ambiguous prompts, achieving only 80% accuracy. Our results further demonstrate systematic discrepancies in LLM behavior and their failure to consistently apply information, indicating that the models can exhibit knowledge without being able to utilize it, significant biases for preferred readings, as well as self inconsistencies. Our study highlights the importance of handling entity ambiguity in future for more trustworthy LLMs

The integration of new modalities into frontier AI systems offers exciting capabilities, but also increases the possibility such systems can be adversarially manipulated in undesirable ways. In this work, we focus on a popular class of vision-language models (VLMs) that generate text outputs conditioned on visual and textual inputs. We conducted a large-scale empirical study to assess the transferability of gradient-based universal image "jailbreaks" using a diverse set of over 40 open-parameter VLMs, including 18 new VLMs that we publicly release. Overall, we find that transferable gradient-based image jailbreaks are extremely difficult to obtain. When an image jailbreak is optimized against a single VLM or against an ensemble of VLMs, the jailbreak successfully jailbreaks the attacked VLM(s), but exhibits little-to-no transfer to any other VLMs; transfer is not affected by whether the attacked and target VLMs possess matching vision backbones or language models, whether the language model underwent instruction-following and/or safety-alignment training, or many other factors. Only two settings display partially successful transfer: between identically-pretrained and identically-initialized VLMs with slightly different VLM training data, and between different training checkpoints of a single VLM. Leveraging these results, we then demonstrate that transfer can be significantly improved against a specific target VLM by attacking larger ensembles of "highly-similar" VLMs. These results stand in stark contrast to existing evidence of universal and transferable text jailbreaks against language models and transferable adversarial attacks against image classifiers, suggesting that VLMs may be more robust to gradient-based transfer attacks.

Refusal training is widely used to prevent LLMs from generating harmful, undesirable, or illegal outputs. We reveal a curious generalization gap in the current refusal training approaches: simply reformulating a harmful request in the past tense (e.g., "How to make a Molotov cocktail?" to "How did people make a Molotov cocktail?") is often sufficient to jailbreak many state-of-the-art LLMs. We systematically evaluate this method on Llama-3 8B, Claude-3.5 Sonnet, GPT-3.5 Turbo, Gemma-2 9B, Phi-3-Mini, GPT-4o mini, GPT-4o, and R2D2 models using GPT-3.5 Turbo as a reformulation model. For example, the success rate of this simple attack on GPT-4o increases from 1% using direct requests to 88% using 20 past tense reformulation attempts on harmful requests from JailbreakBench with GPT-4 as a jailbreak judge. Interestingly, we also find that reformulations in the future tense are less effective, suggesting that refusal guardrails tend to consider past historical questions more benign than hypothetical future questions. Moreover, our experiments on fine-tuning GPT-3.5 Turbo show that defending against past reformulations is feasible when past tense examples are explicitly included in the fine-tuning data. Overall, our findings highlight that the widely used alignment techniques -- such as SFT, RLHF, and adversarial training -- employed to align the studied models can be brittle and do not always generalize as intended. We provide code and jailbreak artifacts at //github.com/tml-epfl/llm-past-tense.

Although large language models (LLMs) have been largely successful in generating functionally correct programs, conditioning models to produce efficient solutions while ensuring correctness remains a challenge. Further, unreliability in benchmarking code efficiency is a hurdle across varying hardware specifications for popular interpreted languages such as Python. In this paper, we present ECCO, a reproducible benchmark for evaluating program efficiency via two paradigms: natural language (NL) based code generation and history-based code editing. On ECCO, we adapt and thoroughly investigate the three most promising existing LLM-based approaches: in-context learning, iterative refinement with execution or NL feedback, and fine-tuning conditioned on execution and editing history. While most methods degrade functional correctness and moderately increase program efficiency, we find that adding execution information often helps maintain functional correctness, and NL feedback enhances more on efficiency. We release our benchmark to support future work on LLM-based generation of efficient code.

Language model pre-training has proven to be useful in learning universal language representations. As a state-of-the-art language model pre-training model, BERT (Bidirectional Encoder Representations from Transformers) has achieved amazing results in many language understanding tasks. In this paper, we conduct exhaustive experiments to investigate different fine-tuning methods of BERT on text classification task and provide a general solution for BERT fine-tuning. Finally, the proposed solution obtains new state-of-the-art results on eight widely-studied text classification datasets.

北京阿比特科技有限公司