The least squares Monte Carlo (LSM) algorithm proposed by Longstaff and Schwartz (2001) is widely used for pricing Bermudan options. The LSM estimator contains undesirable look-ahead bias, and the conventional technique of avoiding it requires additional simulation paths. We present the leave-one-out LSM (LOOLSM) algorithm to eliminate look-ahead bias without doubling simulations. We also show that look-ahead bias is asymptotically proportional to the regressors-to-paths ratio. Our findings are demonstrated with several option examples in which the LSM algorithm overvalues the options. The LOOLSM method can be extended to other regression-based algorithms that improve the LSM method.
We describe a quantum algorithm for the Planted Noisy $k$XOR problem (also known as sparse Learning Parity with Noise) that achieves a nearly quartic ($4$th power) speedup over the best known classical algorithm while also only using logarithmically many qubits. Our work generalizes and simplifies prior work of Hastings, by building on his quantum algorithm for the Tensor Principal Component Analysis (PCA) problem. We achieve our quantum speedup using a general framework based on the Kikuchi Method (recovering the quartic speedup for Tensor PCA), and we anticipate it will yield similar speedups for further planted inference problems. These speedups rely on the fact that planted inference problems naturally instantiate the Guided Sparse Hamiltonian problem. Since the Planted Noisy $k$XOR problem has been used as a component of certain cryptographic constructions, our work suggests that some of these are susceptible to super-quadratic quantum attacks.
This note discusses a simple modification of cross-conformal prediction inspired by recent work on e-values. The precursor of conformal prediction developed in the 1990s by Gammerman, Vapnik, and Vovk was also based on e-values and is called conformal e-prediction in this note. Replacing e-values by p-values led to conformal prediction, which has important advantages over conformal e-prediction without obvious disadvantages. The situation with cross-conformal prediction is, however, different: whereas for cross-conformal prediction validity is only an empirical fact (and can be broken with excessive randomization), this note draws the reader's attention to the obvious fact that cross-conformal e-prediction enjoys a guaranteed property of validity.
This paper considers both the least squares and quasi-maximum likelihood estimation for the recently proposed scalable ARMA model, a parametric infinite-order vector AR model, and their asymptotic normality is also established. It makes feasible the inference on this computationally efficient model, especially for economic and financial time series. An efficient block coordinate descent algorithm is further introduced to search for estimates, and a Bayesian information criterion with selection consistency is suggested for model selection. Simulation experiments are conducted to illustrate their finite sample performance, and a real application on six macroeconomic indicators illustrates the usefulness of the proposed methodology.
Given an Abelian group G, a Boolean-valued function f: G -> {-1,+1}, is said to be s-sparse, if it has at most s-many non-zero Fourier coefficients over the domain G. In a seminal paper, Gopalan et al. proved "Granularity" for Fourier coefficients of Boolean valued functions over Z_2^n, that have found many diverse applications in theoretical computer science and combinatorics. They also studied structural results for Boolean functions over Z_2^n which are approximately Fourier-sparse. In this work, we obtain structural results for approximately Fourier-sparse Boolean valued functions over Abelian groups G of the form,G:= Z_{p_1}^{n_1} \times ... \times Z_{p_t}^{n_t}, for distinct primes p_i. We also obtain a lower bound of the form 1/(m^{2}s)^ceiling(phi(m)/2), on the absolute value of the smallest non-zero Fourier coefficient of an s-sparse function, where m=p_1 ... p_t, and phi(m)=(p_1-1) ... (p_t-1). We carefully apply probabilistic techniques from Gopalan et al., to obtain our structural results, and use some non-trivial results from algebraic number theory to get the lower bound. We construct a family of at most s-sparse Boolean functions over Z_p^n, where p > 2, for arbitrarily large enough s, where the minimum non-zero Fourier coefficient is 1/omega(n). The "Granularity" result of Gopalan et al. implies that the absolute values of non-zero Fourier coefficients of any s-sparse Boolean valued function over Z_2^n are 1/O(s). So, our result shows that one cannot expect such a lower bound for general Abelian groups. Using our new structural results on the Fourier coefficients of sparse functions, we design an efficient testing algorithm for Fourier-sparse Boolean functions, thata requires poly((ms)^phi(m),1/epsilon)-many queries. Further, we prove an Omega(sqrt{s}) lower bound on the query complexity of any adaptive sparsity testing algorithm.
We formulate and solve a Bayesian inverse Navier-Stokes (N-S) problem that assimilates velocimetry data in order to jointly reconstruct a 3D flow field and learn the unknown N-S parameters, including the boundary position. By hardwiring a generalised N-S problem, and regularising its unknown parameters using Gaussian prior distributions, we learn the most likely parameters in a collapsed search space. The most likely flow field reconstruction is then the N-S solution that corresponds to the learned parameters. We develop the method in the variational setting and use a stabilised Nitsche weak form of the N-S problem that permits the control of all N-S parameters. To regularise the inferred the geometry, we use a viscous signed distance field (vSDF) as an auxiliary variable, which is given as the solution of a viscous Eikonal boundary value problem. We devise an algorithm that solves this inverse problem, and numerically implement it using an adjoint-consistent stabilised cut-cell finite element method. We then use this method to reconstruct magnetic resonance velocimetry (flow-MRI) data of a 3D steady laminar flow through a physical model of an aortic arch for two different Reynolds numbers and signal-to-noise ratio (SNR) levels (low/high). We find that the method can accurately i) reconstruct the low SNR data by filtering out the noise/artefacts and recovering flow features that are obscured by noise, and ii) reproduce the high SNR data without overfitting. Although the framework that we develop applies to 3D steady laminar flows in complex geometries, it readily extends to time-dependent laminar and Reynolds-averaged turbulent flows, as well as non-Newtonian (e.g. viscoelastic) fluids.
We consider an on-line least squares regression problem with optimal solution $\theta^*$ and Hessian matrix H, and study a time-average stochastic gradient descent estimator of $\theta^*$. For $k\ge2$, we provide an unbiased estimator of $\theta^*$ that is a modification of the time-average estimator, runs with an expected number of time-steps of order k, with O(1/k) expected excess risk. The constant behind the O notation depends on parameters of the regression and is a poly-logarithmic function of the smallest eigenvalue of H. We provide both a biased and unbiased estimator of the expected excess risk of the time-average estimator and of its unbiased counterpart, without requiring knowledge of either H or $\theta^*$. We describe an "average-start" version of our estimators with similar properties. Our approach is based on randomized multilevel Monte Carlo. Our numerical experiments confirm our theoretical findings.
Boundary value problems based on the convection-diffusion equation arise naturally in models of fluid flow across a variety of engineering applications and design feasibility studies. Naturally, their efficient numerical solution has continued to be an interesting and active topic of research for decades. In the context of finite-element discretization of these boundary value problems, the Streamline Upwind Petrov-Galerkin (SUPG) technique yields accurate discretization in the singularly perturbed regime. In this paper, we propose efficient multigrid iterative solution methods for the resulting linear systems. In particular, we show that techniques from standard multigrid for anisotropic problems can be adapted to these discretizations on both tensor-product as well as semi-structured meshes. The resulting methods are demonstrated to be robust preconditioners for several standard flow benchmarks.
We investigate perturbations of orthonormal bases of $L^2$ via a composition operator $C_h$ induced by a mapping $h$. We provide a comprehensive characterization of the mapping $h$ required for the perturbed sequence to form an orthonormal or Riesz basis. Restricting our analysis to differentiable mappings, we reveal that all Riesz bases of the given form are induced by bi-Lipschitz mappings. In addition, we discuss implications of these results for approximation theory, highlighting the potential of using bijective neural networks to construct complete sequences with favorable approximation properties.
Operator splitting methods tailored to coupled linear port-Hamiltonian systems are developed. We present algorithms that are able to exploit scalar coupling, as well as multirate potential of these coupled systems. The obtained algorithms preserve the dissipative structure of the overall system and are convergent of second order. Numerical results for coupled mass-spring-damper chains illustrate the computational efficiency of the splitting methods compared to a straight-forward application of the implicit midpoint rule to the overall system.
One of the hallmark achievements of the theory of graphical models and Bayesian model selection is the celebrated greedy equivalence search (GES) algorithm due to Chickering and Meek. GES is known to consistently estimate the structure of directed acyclic graph (DAG) models in various special cases including Gaussian and discrete models, which are in particular curved exponential families. A general theory that covers general nonparametric DAG models, however, is missing. Here, we establish the consistency of greedy equivalence search for general families of DAG models that satisfy smoothness conditions on the Markov factorization, and hence may not be curved exponential families, or even parametric. The proof leverages recent advances in nonparametric Bayes to construct a test for comparing misspecified DAG models that avoids arguments based on the Laplace approximation. Nonetheless, when the Laplace approximation is valid and a consistent scoring function exists, we recover the classical result. As a result, we obtain a general consistency theorem for GES applied to general DAG models.