亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The rise of artificial intelligence (AI) has led to various means of integration of AI aimed to provide efficiency in tasks, one of which is career counseling. A key part of getting a job is having a solid resume that passes through the first round of programs and recruiters. It is difficult to find good resources or schedule an appointment with a career counselor to help with editing a resume for a specific role. With the rise of ChatGPT, Bard, and several other AI chat programs it is possible to provide specific, automated feedback on various concerns to suggest places for improvement within the context of career counseling. This paper begins with a quick literature review on the ethical considerations and limitations of AI in career counseling. The authors also have created their own website service, called ResumAI, to test and review the functionality of an AI career counselor. The findings of this study will contribute to the understanding of chat AI ResumAI reviewer programs and sites. The implications of the findings for the field of career counseling, AI development, and ethical practice will be discussed.

相關內容

人(ren)工(gong)智(zhi)(zhi)(zhi)能(neng)雜志AI(Artificial Intelligence)是(shi)目前(qian)公(gong)認的(de)(de)(de)發表該(gai)領(ling)(ling)域最新研究成果的(de)(de)(de)主要(yao)國際論壇。該(gai)期刊歡(huan)迎有關AI廣泛方面的(de)(de)(de)論文,這些論文構成了整個領(ling)(ling)域的(de)(de)(de)進(jin)步,也歡(huan)迎介紹(shao)人(ren)工(gong)智(zhi)(zhi)(zhi)能(neng)應用的(de)(de)(de)論文,但重(zhong)點應該(gai)放在新的(de)(de)(de)和新穎的(de)(de)(de)人(ren)工(gong)智(zhi)(zhi)(zhi)能(neng)方法如何(he)提(ti)高應用領(ling)(ling)域的(de)(de)(de)性(xing)能(neng),而不是(shi)介紹(shao)傳統人(ren)工(gong)智(zhi)(zhi)(zhi)能(neng)方法的(de)(de)(de)另一個應用。關于應用的(de)(de)(de)論文應該(gai)描述(shu)一個原則性(xing)的(de)(de)(de)解決(jue)方案,強調其新穎性(xing),并對正在開發的(de)(de)(de)人(ren)工(gong)智(zhi)(zhi)(zhi)能(neng)技術進(jin)行深入的(de)(de)(de)評估。 官網地址:

Achieving human-like dexterous manipulation remains a crucial area of research in robotics. Current research focuses on improving the success rate of pick-and-place tasks. Compared with pick-and-place, throw-catching behavior has the potential to increase picking speed without transporting objects to their destination. However, dynamic dexterous manipulation poses a major challenge for stable control due to a large number of dynamic contacts. In this paper, we propose a Stability-Constrained Reinforcement Learning (SCRL) algorithm to learn to catch diverse objects with dexterous hands. The SCRL algorithm outperforms baselines by a large margin, and the learned policies show strong zero-shot transfer performance on unseen objects. Remarkably, even though the object in a hand facing sideward is extremely unstable due to the lack of support from the palm, our method can still achieve a high level of success in the most challenging task. Video demonstrations of learned behaviors and the code can be found on the supplementary website.

Recent advances in artificial intelligence (AI) have underscored the need for explainable AI (XAI) to support human understanding of AI systems. Consideration of human factors that impact explanation efficacy, such as mental workload and human understanding, is central to effective XAI design. Existing work in XAI has demonstrated a tradeoff between understanding and workload induced by different types of explanations. Explaining complex concepts through abstractions (hand-crafted groupings of related problem features) has been shown to effectively address and balance this workload-understanding tradeoff. In this work, we characterize the workload-understanding balance via the Information Bottleneck method: an information-theoretic approach which automatically generates abstractions that maximize informativeness and minimize complexity. In particular, we establish empirical connections between workload and complexity and between understanding and informativeness through human-subject experiments. This empirical link between human factors and information-theoretic concepts provides an important mathematical characterization of the workload-understanding tradeoff which enables user-tailored XAI design.

Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.

Reasoning is a fundamental aspect of human intelligence that plays a crucial role in activities such as problem solving, decision making, and critical thinking. In recent years, large language models (LLMs) have made significant progress in natural language processing, and there is observation that these models may exhibit reasoning abilities when they are sufficiently large. However, it is not yet clear to what extent LLMs are capable of reasoning. This paper provides a comprehensive overview of the current state of knowledge on reasoning in LLMs, including techniques for improving and eliciting reasoning in these models, methods and benchmarks for evaluating reasoning abilities, findings and implications of previous research in this field, and suggestions on future directions. Our aim is to provide a detailed and up-to-date review of this topic and stimulate meaningful discussion and future work.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

With the extremely rapid advances in remote sensing (RS) technology, a great quantity of Earth observation (EO) data featuring considerable and complicated heterogeneity is readily available nowadays, which renders researchers an opportunity to tackle current geoscience applications in a fresh way. With the joint utilization of EO data, much research on multimodal RS data fusion has made tremendous progress in recent years, yet these developed traditional algorithms inevitably meet the performance bottleneck due to the lack of the ability to comprehensively analyse and interpret these strongly heterogeneous data. Hence, this non-negligible limitation further arouses an intense demand for an alternative tool with powerful processing competence. Deep learning (DL), as a cutting-edge technology, has witnessed remarkable breakthroughs in numerous computer vision tasks owing to its impressive ability in data representation and reconstruction. Naturally, it has been successfully applied to the field of multimodal RS data fusion, yielding great improvement compared with traditional methods. This survey aims to present a systematic overview in DL-based multimodal RS data fusion. More specifically, some essential knowledge about this topic is first given. Subsequently, a literature survey is conducted to analyse the trends of this field. Some prevalent sub-fields in the multimodal RS data fusion are then reviewed in terms of the to-be-fused data modalities, i.e., spatiospectral, spatiotemporal, light detection and ranging-optical, synthetic aperture radar-optical, and RS-Geospatial Big Data fusion. Furthermore, We collect and summarize some valuable resources for the sake of the development in multimodal RS data fusion. Finally, the remaining challenges and potential future directions are highlighted.

Knowledge Graph Embedding (KGE) aims to learn representations for entities and relations. Most KGE models have gained great success, especially on extrapolation scenarios. Specifically, given an unseen triple (h, r, t), a trained model can still correctly predict t from (h, r, ?), or h from (?, r, t), such extrapolation ability is impressive. However, most existing KGE works focus on the design of delicate triple modeling function, which mainly tells us how to measure the plausibility of observed triples, but offers limited explanation of why the methods can extrapolate to unseen data, and what are the important factors to help KGE extrapolate. Therefore in this work, we attempt to study the KGE extrapolation of two problems: 1. How does KGE extrapolate to unseen data? 2. How to design the KGE model with better extrapolation ability? For the problem 1, we first discuss the impact factors for extrapolation and from relation, entity and triple level respectively, propose three Semantic Evidences (SEs), which can be observed from train set and provide important semantic information for extrapolation. Then we verify the effectiveness of SEs through extensive experiments on several typical KGE methods. For the problem 2, to make better use of the three levels of SE, we propose a novel GNN-based KGE model, called Semantic Evidence aware Graph Neural Network (SE-GNN). In SE-GNN, each level of SE is modeled explicitly by the corresponding neighbor pattern, and merged sufficiently by the multi-layer aggregation, which contributes to obtaining more extrapolative knowledge representation. Finally, through extensive experiments on FB15k-237 and WN18RR datasets, we show that SE-GNN achieves state-of-the-art performance on Knowledge Graph Completion task and performs a better extrapolation ability.

The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.

北京阿比特科技有限公司