Large Language Models are becoming an increasingly popular tool for software development. Their ability to model and generate source code has been demonstrated in a variety of contexts, including code completion, summarization, translation, and lookup. However, they often struggle to generate code for more complex tasks. In this paper, we explore the ability of state-of-the-art language models to generate parallel code. We propose a benchmark, PCGBench, consisting of a set of 420 tasks for evaluating the ability of language models to generate parallel code, and we evaluate the performance of several state-of-the-art open- and closed-source language models on these tasks. We introduce novel metrics for comparing parallel code generation performance and use them to explore how well each LLM performs on various parallel programming models and computational problem types.
Neural machine translation (MT) models achieve strong results across a variety of settings, but it is widely believed that they are highly sensitive to "noisy" inputs, such as spelling errors, abbreviations, and other formatting issues. In this paper, we revisit this insight in light of recent multilingual MT models and large language models (LLMs) applied to machine translation. Somewhat surprisingly, we show through controlled experiments that these models are far more robust to many kinds of noise than previous models, even when they perform similarly on clean data. This is notable because, even though LLMs have more parameters and more complex training processes than past models, none of the open ones we consider use any techniques specifically designed to encourage robustness. Next, we show that similar trends hold for social media translation experiments -- LLMs are more robust to social media text. We include an analysis of the circumstances in which source correction techniques can be used to mitigate the effects of noise. Altogether, we show that robustness to many types of noise has increased.
Distance correlation is a popular measure of dependence between random variables. It has some robustness properties, but not all. We prove that the influence function of the usual distance correlation is bounded, but that its breakdown value is zero. Moreover, it has an unbounded sensitivity function, converging to the bounded influence function for increasing sample size. To address this sensitivity to outliers we construct a more robust version of distance correlation, which is based on a new data transformation. Simulations indicate that the resulting method is quite robust, and has good power in the presence of outliers. We illustrate the method on genetic data. Comparing the classical distance correlation with its more robust version provides additional insight.
Fractional Differential Equations (FDEs) are essential tools for modelling complex systems in science and engineering. They extend the traditional concepts of differentiation and integration to non-integer orders, enabling a more precise representation of processes characterised by non-local and memory-dependent behaviours. This property is useful in systems where variables do not respond to changes instantaneously, but instead exhibit a strong memory of past interactions. Having this in mind, and drawing inspiration from Neural Ordinary Differential Equations (Neural ODEs), we propose the Neural FDE, a novel deep neural network architecture that adjusts a FDE to the dynamics of data. This work provides a comprehensive overview of the numerical method employed in Neural FDEs and the Neural FDE architecture. The numerical outcomes suggest that, despite being more computationally demanding, the Neural FDE may outperform the Neural ODE in modelling systems with memory or dependencies on past states, and it can effectively be applied to learn more intricate dynamical systems.
Data analysis is challenging as it requires synthesizing domain knowledge, statistical expertise, and programming skills. Assistants powered by large language models (LLMs), such as ChatGPT, can assist analysts by translating natural language instructions into code. However, AI-assistant responses and analysis code can be misaligned with the analyst's intent or be seemingly correct but lead to incorrect conclusions. Therefore, validating AI assistance is crucial and challenging. Here, we explore how analysts understand and verify the correctness of AI-generated analyses. To observe analysts in diverse verification approaches, we develop a design probe equipped with natural language explanations, code, visualizations, and interactive data tables with common data operations. Through a qualitative user study (n=22) using this probe, we uncover common behaviors within verification workflows and how analysts' programming, analysis, and tool backgrounds reflect these behaviors. Additionally, we provide recommendations for analysts and highlight opportunities for designers to improve future AI-assistant experiences.
Partially observable Markov decision processes (POMDPs) have been widely used in many robotic applications for sequential decision-making under uncertainty. POMDP online planning algorithms such as Partially Observable Monte-Carlo Planning (POMCP) can solve very large POMDPs with the goal of maximizing the expected return. But the resulting policies cannot provide safety guarantees which are imperative for real-world safety-critical tasks (e.g., autonomous driving). In this work, we consider safety requirements represented as almost-sure reach-avoid specifications (i.e., the probability to reach a set of goal states is one and the probability to reach a set of unsafe states is zero). We compute shields that restrict unsafe actions which would violate the almost-sure reach-avoid specifications. We then integrate these shields into the POMCP algorithm for safe POMDP online planning. We propose four distinct shielding methods, differing in how the shields are computed and integrated, including factored variants designed to improve scalability. Experimental results on a set of benchmark domains demonstrate that the proposed shielding methods successfully guarantee safety (unlike the baseline POMCP without shielding) on large POMDPs, with negligible impact on the runtime for online planning.
Learning meaningful word embeddings is key to training a robust language model. The recent rise of Large Language Models (LLMs) has provided us with many new word/sentence/document embedding models. Although LLMs have shown remarkable advancement in various NLP tasks, it is still unclear whether the performance improvement is merely because of scale or whether underlying embeddings they produce significantly differ from classical encoding models like Sentence-BERT (SBERT) or Universal Sentence Encoder (USE). This paper systematically investigates this issue by comparing classical word embedding techniques against LLM-based word embeddings in terms of their latent vector semantics. Our results show that LLMs tend to cluster semantically related words more tightly than classical models. LLMs also yield higher average accuracy on the Bigger Analogy Test Set (BATS) over classical methods. Finally, some LLMs tend to produce word embeddings similar to SBERT, a relatively lighter classical model.
Out-of-distribution (OOD) detection plays a vital role in enhancing the reliability of machine learning (ML) models. The emergence of large language models (LLMs) has catalyzed a paradigm shift within the ML community, showcasing their exceptional capabilities across diverse natural language processing tasks. While existing research has probed OOD detection with relative small-scale Transformers like BERT, RoBERTa and GPT-2, the stark differences in scales, pre-training objectives, and inference paradigms call into question the applicability of these findings to LLMs. This paper embarks on a pioneering empirical investigation of OOD detection in the domain of LLMs, focusing on LLaMA series ranging from 7B to 65B in size. We thoroughly evaluate commonly-used OOD detectors, scrutinizing their performance in both zero-grad and fine-tuning scenarios. Notably, we alter previous discriminative in-distribution fine-tuning into generative fine-tuning, aligning the pre-training objective of LLMs with downstream tasks. Our findings unveil that a simple cosine distance OOD detector demonstrates superior efficacy, outperforming other OOD detectors. We provide an intriguing explanation for this phenomenon by highlighting the isotropic nature of the embedding spaces of LLMs, which distinctly contrasts with the anisotropic property observed in smaller BERT family models. The new insight enhances our understanding of how LLMs detect OOD data, thereby enhancing their adaptability and reliability in dynamic environments.
Feature attribution methods are popular in interpretable machine learning. These methods compute the attribution of each input feature to represent its importance, but there is no consensus on the definition of "attribution", leading to many competing methods with little systematic evaluation, complicated in particular by the lack of ground truth attribution. To address this, we propose a dataset modification procedure to induce such ground truth. Using this procedure, we evaluate three common methods: saliency maps, rationales, and attentions. We identify several deficiencies and add new perspectives to the growing body of evidence questioning the correctness and reliability of these methods applied on datasets in the wild. We further discuss possible avenues for remedy and recommend new attribution methods to be tested against ground truth before deployment. The code is available at \url{//github.com/YilunZhou/feature-attribution-evaluation}.
Non-convex optimization is ubiquitous in modern machine learning. Researchers devise non-convex objective functions and optimize them using off-the-shelf optimizers such as stochastic gradient descent and its variants, which leverage the local geometry and update iteratively. Even though solving non-convex functions is NP-hard in the worst case, the optimization quality in practice is often not an issue -- optimizers are largely believed to find approximate global minima. Researchers hypothesize a unified explanation for this intriguing phenomenon: most of the local minima of the practically-used objectives are approximately global minima. We rigorously formalize it for concrete instances of machine learning problems.
We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.