The principles of net neutrality have been essential for maintaining the diversity of services built on top of the internet and for maintaining some competition between small and large providers of those online services. That diversity and competition, in turn, provide users with a broader array of choices for seeking online content and disseminating their own speech. Furthermore, in order for the internet to be used to its full potential and to protect the human rights of internet users, we need privacy from surveillance and unwarranted data collection by governments, network providers, and edge providers. The transition to 5G mobile networks enables network operators to engage in a technique called network slicing. The portion of a network that is sliced can be used to provide a suite of different service offerings, each tailored to specific purposes, instead of a single, general-purpose subscription for mobile voice and data. This requires a careful approach. Our report describes the technologies used for network slicing and outlines recommendations -- for both operators and regulators -- to enable network slicing while maintaining network neutrality, protecting privacy, and promoting competition.
The contraction cost of a tensor network depends on the contraction order. However, the optimal contraction ordering problem is known to be NP-hard. We show that the linear contraction ordering problem for tree tensor networks admits a polynomial-time algorithm, by drawing connections to database join ordering. The result relies on the adjacent sequence interchange property of the contraction cost, which enables a global decision of the contraction order based on local comparisons. Based on that, we specify a modified version of the IKKBZ database join ordering algorithm to find the optimal tree tensor network linear contraction order. Finally, we extend our algorithm as a heuristic to general contraction orders and arbitrary tensor network topologies.
It is widely recognized that the generalization ability of neural networks can be greatly enhanced through carefully designing the training procedure. The current state-of-the-art training approach involves utilizing stochastic gradient descent (SGD) or Adam optimization algorithms along with a combination of additional regularization techniques such as weight decay, dropout, or noise injection. Optimal generalization can only be achieved by tuning a multitude of hyperparameters through grid search, which can be time-consuming and necessitates additional validation datasets. To address this issue, we introduce a practical PAC-Bayes training framework that is nearly tuning-free and requires no additional regularization while achieving comparable testing performance to that of SGD/Adam after a complete grid search and with extra regularizations. Our proposed algorithm demonstrates the remarkable potential of PAC training to achieve state-of-the-art performance on deep neural networks with enhanced robustness and interpretability.
Due to data privacy constraints, data sharing among multiple clinical centers is restricted, which impedes the development of high performance deep learning models from multicenter collaboration. Naive weight transfer methods share intermediate model weights without raw data and hence can bypass data privacy restrictions. However, performance drops are typically observed when the model is transferred from one center to the next because of the forgetting problem. Incremental transfer learning, which combines peer-to-peer federated learning and domain incremental learning, can overcome the data privacy issue and meanwhile preserve model performance by using continual learning techniques. In this work, a conventional domain/task incremental learning framework is adapted for incremental transfer learning. A comprehensive survey on the efficacy of different regularization-based continual learning methods for multicenter collaboration is performed. The influences of data heterogeneity, classifier head setting, network optimizer, model initialization, center order, and weight transfer type have been investigated thoroughly. Our framework is publicly accessible to the research community for further development.
Subscribing to online services is typically a straightforward process, but cancelling them can be arduous and confusing -- causing many to resign and continue paying for services they no longer use. Making the cancellation intentionally difficult is recognized as a dark pattern called Roach Motel. This paper characterizes the subscription and cancellation flows of popular news websites from four different countries, and discusses them in the context of recent regulatory changes. We study the design features that make it difficult to cancel a subscription and find several cancellation flows that feature intentional barriers, such as forcing users to type in a phrase or call a representative. Further, we find many subscription flows that do not adequately inform users about recurring charges. Our results point to a growing need for effective regulation of designs that trick, coerce, or manipulate users into paying for subscriptions they do not want.
The correlation between the sharpness of loss minima and generalisation in the context of deep neural networks has been subject to discussion for a long time. Whilst mostly investigated in the context of selected benchmark data sets in the area of computer vision, we explore this aspect for the audio scene classification task of the DCASE2020 challenge data. Our analysis is based on twodimensional filter-normalised visualisations and a derived sharpness measure. Our exploratory analysis shows that sharper minima tend to show better generalisation than flat minima -even more so for out-of-domain data, recorded from previously unseen devices-, thus adding to the dispute about better generalisation capabilities of flat minima. We further find that, in particular, the choice of optimisers is a main driver of the sharpness of minima and we discuss resulting limitations with respect to comparability. Our code, trained model states and loss landscape visualisations are publicly available.
Neural networks have achieved remarkable performance across various problem domains, but their widespread applicability is hindered by inherent limitations such as overconfidence in predictions, lack of interpretability, and vulnerability to adversarial attacks. To address these challenges, Bayesian neural networks (BNNs) have emerged as a compelling extension of conventional neural networks, integrating uncertainty estimation into their predictive capabilities. This comprehensive primer presents a systematic introduction to the fundamental concepts of neural networks and Bayesian inference, elucidating their synergistic integration for the development of BNNs. The target audience comprises statisticians with a potential background in Bayesian methods but lacking deep learning expertise, as well as machine learners proficient in deep neural networks but with limited exposure to Bayesian statistics. We provide an overview of commonly employed priors, examining their impact on model behavior and performance. Additionally, we delve into the practical considerations associated with training and inference in BNNs. Furthermore, we explore advanced topics within the realm of BNN research, acknowledging the existence of ongoing debates and controversies. By offering insights into cutting-edge developments, this primer not only equips researchers and practitioners with a solid foundation in BNNs, but also illuminates the potential applications of this dynamic field. As a valuable resource, it fosters an understanding of BNNs and their promising prospects, facilitating further advancements in the pursuit of knowledge and innovation.
With the advent of 5G commercialization, the need for more reliable, faster, and intelligent telecommunication systems are envisaged for the next generation beyond 5G (B5G) radio access technologies. Artificial Intelligence (AI) and Machine Learning (ML) are not just immensely popular in the service layer applications but also have been proposed as essential enablers in many aspects of B5G networks, from IoT devices and edge computing to cloud-based infrastructures. However, most of the existing surveys in B5G security focus on the performance of AI/ML models and their accuracy, but they often overlook the accountability and trustworthiness of the models' decisions. Explainable AI (XAI) methods are promising techniques that would allow system developers to identify the internal workings of AI/ML black-box models. The goal of using XAI in the security domain of B5G is to allow the decision-making processes of the security of systems to be transparent and comprehensible to stakeholders making the systems accountable for automated actions. In every facet of the forthcoming B5G era, including B5G technologies such as RAN, zero-touch network management, E2E slicing, this survey emphasizes the role of XAI in them and the use cases that the general users would ultimately enjoy. Furthermore, we presented the lessons learned from recent efforts and future research directions on top of the currently conducted projects involving XAI.
Deep neural networks (DNNs) have achieved unprecedented success in the field of artificial intelligence (AI), including computer vision, natural language processing and speech recognition. However, their superior performance comes at the considerable cost of computational complexity, which greatly hinders their applications in many resource-constrained devices, such as mobile phones and Internet of Things (IoT) devices. Therefore, methods and techniques that are able to lift the efficiency bottleneck while preserving the high accuracy of DNNs are in great demand in order to enable numerous edge AI applications. This paper provides an overview of efficient deep learning methods, systems and applications. We start from introducing popular model compression methods, including pruning, factorization, quantization as well as compact model design. To reduce the large design cost of these manual solutions, we discuss the AutoML framework for each of them, such as neural architecture search (NAS) and automated pruning and quantization. We then cover efficient on-device training to enable user customization based on the local data on mobile devices. Apart from general acceleration techniques, we also showcase several task-specific accelerations for point cloud, video and natural language processing by exploiting their spatial sparsity and temporal/token redundancy. Finally, to support all these algorithmic advancements, we introduce the efficient deep learning system design from both software and hardware perspectives.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
In many real-world network datasets such as co-authorship, co-citation, email communication, etc., relationships are complex and go beyond pairwise. Hypergraphs provide a flexible and natural modeling tool to model such complex relationships. The obvious existence of such complex relationships in many real-world networks naturaly motivates the problem of learning with hypergraphs. A popular learning paradigm is hypergraph-based semi-supervised learning (SSL) where the goal is to assign labels to initially unlabeled vertices in a hypergraph. Motivated by the fact that a graph convolutional network (GCN) has been effective for graph-based SSL, we propose HyperGCN, a novel GCN for SSL on attributed hypergraphs. Additionally, we show how HyperGCN can be used as a learning-based approach for combinatorial optimisation on NP-hard hypergraph problems. We demonstrate HyperGCN's effectiveness through detailed experimentation on real-world hypergraphs.