亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Dynamic models of paradigm change can elucidate how the simplest of processes may lead to unexpected outcomes, and thereby can reveal new potential explanations for observed linguistic phenomena. Ackerman & Malouf (2015) present a model in which inflectional systems reduce in disorder through the action of an attraction-only dynamic, in which lexemes only ever grow more similar to one another over time. Here we emphasise that: (1) Attraction-only models cannot evolve the structured diversity which characterises true inflectional systems, because they inevitably remove all variation; and (2) Models with both attraction and repulsion enable the emergence of systems that are strikingly reminiscent of morphomic structure such as inflection classes. Thus, just one small ingredient -- change based on dissimilarity -- separates models that tend inexorably to uniformity, and which therefore are implausible for inflectional morphology, from those which evolve stable, morphome-like structure. These models have the potential to alter how we attempt to account for morphological complexity.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 泛函 · CASE · 相互獨立的 · 相關系數 ·
2022 年 1 月 21 日

The design of privacy mechanisms for two scenarios is studied where the private data is hidden or observable. In the first scenario, an agent observes useful data $Y$, which is correlated with private data $X$, and wants to disclose the useful information to a user. A privacy mechanism is employed to generate data $U$ that maximizes the revealed information about $Y$ while satisfying a privacy criterion. In the second scenario, the agent has additionally access to the private data. To this end, the Functional Representation Lemma and Strong Functional Representation Lemma are extended relaxing the independence condition and thereby allowing a certain leakage. Lower bounds on privacy-utility trade-off are derived for the second scenario as well as upper bounds for both scenarios. In particular, for the case where no leakage is allowed, our upper and lower bounds improve previous bounds.

Distributed Artificial Intelligence (DAI) is regarded as one of the most promising techniques to provide intelligent services under strict privacy protection regulations for multiple clients. By applying DAI, training on raw data is carried out locally, while the trained outputs, e.g., model parameters, from multiple local clients, are sent back to a central server for aggregation. Recently, for achieving better practicality, DAI is studied in conjunction with wireless communication networks, incorporating various random effects brought by wireless channels. However, because of the complex and case-dependent nature of wireless channels, a generic simulator for applying DAI in wireless communication networks is still lacking. To accelerate the development of DAI applied in wireless communication networks, we propose a generic system design in this paper as well as an associated simulator that can be set according to wireless channels and system-level configurations. Details of the system design and analysis of the impacts of wireless environments are provided to facilitate further implementations and updates. We employ a series of experiments to verify the effectiveness and efficiency of the proposed system design and reveal its superior scalability.

Local differential privacy (LDP), which perturbs the data of each user locally and only sends the noisy version of her information to the aggregator, is a popular privacy-preserving data collection mechanism. In LDP, the data collector could obtain accurate statistics without access to original data, thus guaranteeing privacy. However, a primary drawback of LDP is its disappointing utility in high-dimensional space. Although various LDP schemes have been proposed to reduce perturbation, they share the same and naive aggregation mechanism at the side of the collector. In this paper, we first bring forward an analytical framework to generally measure the utilities of LDP mechanisms in high-dimensional space, which can benchmark existing and future LDP mechanisms without conducting any experiment. Based on this, the framework further reveals that the naive aggregation is sub-optimal in high-dimensional space, and there is much room for improvement. Motivated by this, we present a re-calibration protocol HDR4ME for high-dimensional mean estimation, which improves the utilities of existing LDP mechanisms without making any change to them. Both theoretical analysis and extensive experiments confirm the generality and effectiveness of our framework and protocol.

The standard semantics of multi-agent epistemic logic S5 is based on Kripke models whose accessibility relations are reflexive, symmetric and transitive. This one dimensional structure contains implicit higher-dimensional information beyond pairwise interactions, that we formalized as pure simplicial models in a previous work (Information and Computation, 2021). Here we extend the theory to encompass simplicial models that are not necessarily pure. The corresponding class of Kripke models are those where the accessibility relation is symmetric and transitive, but might not be reflexive. Such models correspond to the epistemic logic KB4 . Impure simplicial models arise in situations where two possible worlds may not have the same set of agents. We illustrate it with distributed computing examples of synchronous systems where processes may crash.

Algorithms that aid human tasks, such as recommendation systems, are ubiquitous. They appear in everything from social media to streaming videos to online shopping. However, the feedback loop between people and algorithms is poorly understood and can amplify cognitive and social biases (algorithmic confounding), leading to unexpected outcomes. In this work, we explore algorithmic confounding in collaborative filtering-based recommendation algorithms through teacher-student learning simulations. Namely, a student collaborative filtering-based model, trained on simulated choices, is used by the recommendation algorithm to recommend items to agents. Agents might choose some of these items, according to an underlying teacher model, with new choices then fed back into the student model as new training data (approximating online machine learning). These simulations demonstrate how algorithmic confounding produces erroneous recommendations which in turn lead to instability, i.e., wide variations in an item's popularity between each simulation realization. We use the simulations to demonstrate a novel approach to training collaborative filtering models that can create more stable and accurate recommendations. Our methodology is general enough that it can be extended to other socio-technical systems in order to better quantify and improve the stability of algorithms. These results highlight the need to account for emergent behaviors from interactions between people and algorithms.

SIRS models capture transmission dynamics of infectious diseases for which immunity is not lifelong. Extending these models by a W compartment for individuals with waning immunity, the boosting of the immune system upon repeated exposure may be incorporated. Previous analyses assumed identical waning rates from R to W and from W to S. This implicitly assumes equal length for the period of full immunity and of waned immunity. We relax this restriction, and allow an asymmetric partitioning of the total immune period. Stability switches of the endemic equilibrium are investigated with a combination of analytic and numerical tools. Then, continuation methods are applied to track bifurcations along the equilibrium branch. We find rich dynamics: Hopf bifurcations, endemic double bubbles, and regions of bistability. Our results highlight that the length of the period in which waning immunity can be boosted is a crucial parameter significantly influencing long term epidemiological dynamics.

Static stability in economic models means negative incentives for deviation from equilibrium strategies, which we expect to assure a return to equilibrium, i.e., dynamic stability, as long as agents respond to incentives. There have been many attempts to prove this link, especially in evolutionary game theory, yielding both negative and positive results. This paper presents a universal and intuitive approach to this link. We prove that static stability assures dynamic stability if agents' choices of switching strategies are rationalizable by introducing costs and constraints in those switching decisions. This idea guides us to track the remaining expected payoff \textit{net }gains from switches, after deducting the costs and to be maximized subject to the constraints as a Lyapunov function. It also explains reasons behind the known negative results. While our analysis here is confined to myopic evolutionary dynamics in population games, our approach is applicable to more complex situations.

Zeroth-order optimization methods are developed to overcome the practical hurdle of having knowledge of explicit derivatives. Instead, these schemes work with merely access to noisy functions evaluations. The predominant approach is to mimic first-order methods by means of some gradient estimator. The theoretical limitations are well-understood, yet, as most of these methods rely on finite-differencing for shrinking differences, numerical cancellation can be catastrophic. The numerical community developed an efficient method to overcome this by passing to the complex domain. This approach has been recently adopted by the optimization community and in this work we analyze the practically relevant setting of dealing with computational noise. To exemplify the possibilities we focus on the strongly-convex optimization setting and provide a variety of non-asymptotic results, corroborated by numerical experiments, and end with local non-convex optimization.

Rishi Bommasani,Drew A. Hudson,Ehsan Adeli,Russ Altman,Simran Arora,Sydney von Arx,Michael S. Bernstein,Jeannette Bohg,Antoine Bosselut,Emma Brunskill,Erik Brynjolfsson,Shyamal Buch,Dallas Card,Rodrigo Castellon,Niladri Chatterji,Annie Chen,Kathleen Creel,Jared Quincy Davis,Dora Demszky,Chris Donahue,Moussa Doumbouya,Esin Durmus,Stefano Ermon,John Etchemendy,Kawin Ethayarajh,Li Fei-Fei,Chelsea Finn,Trevor Gale,Lauren Gillespie,Karan Goel,Noah Goodman,Shelby Grossman,Neel Guha,Tatsunori Hashimoto,Peter Henderson,John Hewitt,Daniel E. Ho,Jenny Hong,Kyle Hsu,Jing Huang,Thomas Icard,Saahil Jain,Dan Jurafsky,Pratyusha Kalluri,Siddharth Karamcheti,Geoff Keeling,Fereshte Khani,Omar Khattab,Pang Wei Kohd,Mark Krass,Ranjay Krishna,Rohith Kuditipudi,Ananya Kumar,Faisal Ladhak,Mina Lee,Tony Lee,Jure Leskovec,Isabelle Levent,Xiang Lisa Li,Xuechen Li,Tengyu Ma,Ali Malik,Christopher D. Manning,Suvir Mirchandani,Eric Mitchell,Zanele Munyikwa,Suraj Nair,Avanika Narayan,Deepak Narayanan,Ben Newman,Allen Nie,Juan Carlos Niebles,Hamed Nilforoshan,Julian Nyarko,Giray Ogut,Laurel Orr,Isabel Papadimitriou,Joon Sung Park,Chris Piech,Eva Portelance,Christopher Potts,Aditi Raghunathan,Rob Reich,Hongyu Ren,Frieda Rong,Yusuf Roohani,Camilo Ruiz,Jack Ryan,Christopher Ré,Dorsa Sadigh,Shiori Sagawa,Keshav Santhanam,Andy Shih,Krishnan Srinivasan,Alex Tamkin,Rohan Taori,Armin W. Thomas,Florian Tramèr,Rose E. Wang,William Wang,Bohan Wu,Jiajun Wu,Yuhuai Wu,Sang Michael Xie,Michihiro Yasunaga,Jiaxuan You,Matei Zaharia,Michael Zhang,Tianyi Zhang,Xikun Zhang,Yuhui Zhang,Lucia Zheng,Kaitlyn Zhou,Percy Liang
Rishi Bommasani,Drew A. Hudson,Ehsan Adeli,Russ Altman,Simran Arora,Sydney von Arx,Michael S. Bernstein,Jeannette Bohg,Antoine Bosselut,Emma Brunskill,Erik Brynjolfsson,Shyamal Buch,Dallas Card,Rodrigo Castellon,Niladri Chatterji,Annie Chen,Kathleen Creel,Jared Quincy Davis,Dora Demszky,Chris Donahue,Moussa Doumbouya,Esin Durmus,Stefano Ermon,John Etchemendy,Kawin Ethayarajh,Li Fei-Fei,Chelsea Finn,Trevor Gale,Lauren Gillespie,Karan Goel,Noah Goodman,Shelby Grossman,Neel Guha,Tatsunori Hashimoto,Peter Henderson,John Hewitt,Daniel E. Ho,Jenny Hong,Kyle Hsu,Jing Huang,Thomas Icard,Saahil Jain,Dan Jurafsky,Pratyusha Kalluri,Siddharth Karamcheti,Geoff Keeling,Fereshte Khani,Omar Khattab,Pang Wei Kohd,Mark Krass,Ranjay Krishna,Rohith Kuditipudi,Ananya Kumar,Faisal Ladhak,Mina Lee,Tony Lee,Jure Leskovec,Isabelle Levent,Xiang Lisa Li,Xuechen Li,Tengyu Ma,Ali Malik,Christopher D. Manning,Suvir Mirchandani,Eric Mitchell,Zanele Munyikwa,Suraj Nair,Avanika Narayan,Deepak Narayanan,Ben Newman,Allen Nie,Juan Carlos Niebles,Hamed Nilforoshan,Julian Nyarko,Giray Ogut,Laurel Orr,Isabel Papadimitriou,Joon Sung Park,Chris Piech,Eva Portelance,Christopher Potts,Aditi Raghunathan,Rob Reich,Hongyu Ren,Frieda Rong,Yusuf Roohani,Camilo Ruiz,Jack Ryan,Christopher Ré,Dorsa Sadigh,Shiori Sagawa,Keshav Santhanam,Andy Shih,Krishnan Srinivasan,Alex Tamkin,Rohan Taori,Armin W. Thomas,Florian Tramèr,Rose E. Wang,William Wang,Bohan Wu,Jiajun Wu,Yuhuai Wu,Sang Michael Xie,Michihiro Yasunaga,Jiaxuan You,Matei Zaharia,Michael Zhang,Tianyi Zhang,Xikun Zhang,Yuhui Zhang,Lucia Zheng,Kaitlyn Zhou,Percy Liang

AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.

Conversational systems have come a long way after decades of research and development, from Eliza and Parry in the 60's and 70's, to task-completion systems as in the ATIS project, to intelligent personal assistants such as Siri, and to today's social chatbots like XiaoIce. Social chatbots' appeal lies in not only their ability to respond to users' diverse requests, but also in being able to establish an emotional connection with users. The latter is done by satisfying the users' essential needs for communication, affection, and social belonging. The design of social chatbots must focus on user engagement and take both intellectual quotient (IQ) and emotional quotient (EQ) into account. Users should want to engage with the social chatbot; as such, we define the success metric for social chatbots as conversation-turns per session (CPS). Using XiaoIce as an illustrative example, we discuss key technologies in building social chatbots from core chat to visual sense to skills. We also show how XiaoIce can dynamically recognize emotion and engage the user throughout long conversations with appropriate interpersonal responses. As we become the first generation of humans ever living with AI, social chatbots that are well-designed to be both useful and empathic will soon be ubiquitous.

北京阿比特科技有限公司