亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Network Signalling Data (NSD) have the potential to provide continuous spatio-temporal information about the presence, mobility, and usage patterns of cell phone services by individuals. Such information is invaluable for monitoring large urban areas and supporting the implementation of decision-making services. When analyzed in real time, NSD can enable the early detection of critical urban events, including fires, large accidents, stampedes, terrorist attacks, and sports and leisure gatherings, especially if these events significantly impact mobile phone network activity in the affected areas. This paper presents empirical evidence that advanced NSD can detect anomalies in mobile traffic service consumption, attributable to critical urban events, with fine spatial and temporal resolutions. We introduce two methodologies for real-time anomaly detection from multivariate time series extracted from large-scale NSD, utilizing a range of algorithms adapted from the state-of-the-art in unsupervised machine learning techniques for anomaly detection. Our research includes a comprehensive quantitative evaluation of these algorithms on a large-scale dataset of NSD service consumption for the Paris region. The evaluation uses an original dataset of documented critical or unusual urban events. This dataset has been built as a ground truth basis for assessing the algorithms performance. The obtained results demonstrate that our framework can detect unusual events almost instantaneously and locate the affected areas with high precision, largely outperforming random classifiers. This efficiency and effectiveness underline the potential of NSD-based anomaly detection in significantly enhancing emergency response strategies and urban planning.

相關內容

Context: To effectively defend against ever-evolving cybersecurity threats, software systems should be made as secure as possible. To achieve this, software developers should understand potential vulnerabilities and apply secure coding practices. To prepare these skilled professionals, it is important that cybersecurity concepts are included in programming courses taught at universities. Objective: To present a comprehensive and unbiased literature review on teaching of cybersecurity concepts in programming courses taught at universities. Method: We perform a Systematic Mapping Study. We present six research questions, define our selection criteria, and develop a classification scheme. Results and Conclusions: We select 24 publications. Our results show a wide range of research contributions. We also outline guidelines and identify opportunities for future studies. The guidelines include coverage of security knowledge categories and evaluation of contributions. We suggest that future studies should cover security issues, negative impacts, and countermeasures, as well as apply evaluation techniques that examine students' knowledge. The opportunities for future studies are related to advanced courses, security knowledge frameworks, and programming environments. Furthermore, there is a need of a holistic security framework that covers the security concepts identified in this study and is suitable for education.

Large Language Models (LLMs) have demonstrated remarkable proficiency in human interactions, yet their application within the medical field remains insufficiently explored. Previous works mainly focus on the performance of medical knowledge with examinations, which is far from the realistic scenarios, falling short in assessing the abilities of LLMs on clinical tasks. In the quest to enhance the application of Large Language Models (LLMs) in healthcare, this paper introduces the Automated Interactive Evaluation (AIE) framework and the State-Aware Patient Simulator (SAPS), targeting the gap between traditional LLM evaluations and the nuanced demands of clinical practice. Unlike prior methods that rely on static medical knowledge assessments, AIE and SAPS provide a dynamic, realistic platform for assessing LLMs through multi-turn doctor-patient simulations. This approach offers a closer approximation to real clinical scenarios and allows for a detailed analysis of LLM behaviors in response to complex patient interactions. Our extensive experimental validation demonstrates the effectiveness of the AIE framework, with outcomes that align well with human evaluations, underscoring its potential to revolutionize medical LLM testing for improved healthcare delivery.

Data augmentation is widely applied and has shown its benefits in different machine learning tasks. However, as recently observed in some downstream tasks, data augmentation may introduce an unfair impact on classifications. While it can improve the performance of some classes, it can actually be detrimental for other classes, which can be problematic in some application domains. In this paper, to counteract this phenomenon, we propose a FAir Classification approach with a Two-player game (FACT). We first formulate the training of a classifier with data augmentation as a fair optimization problem, which can be further written as an adversarial two-player game. Following this formulation, we propose a novel multiplicative weight optimization algorithm, for which we theoretically prove that it can converge to a solution that is fair over classes. Interestingly, our formulation also reveals that this fairness issue over classes is not due to data augmentation only, but is in fact a general phenomenon. Our empirical experiments demonstrate that the performance of our learned classifiers is indeed more fairly distributed over classes in five datasets, with only limited impact on the average accuracy.

Knowledge Graphs (KGs) are fundamental resources in knowledge-intensive tasks in NLP. Due to the limitation of manually creating KGs, KG Completion (KGC) has an important role in automatically completing KGs by scoring their links with KG Embedding (KGE). To handle many entities in training, KGE relies on Negative Sampling (NS) loss that can reduce the computational cost by sampling. Since the appearance frequencies for each link are at most one in KGs, sparsity is an essential and inevitable problem. The NS loss is no exception. As a solution, the NS loss in KGE relies on smoothing methods like Self-Adversarial Negative Sampling (SANS) and subsampling. However, it is uncertain what kind of smoothing method is suitable for this purpose due to the lack of theoretical understanding. This paper provides theoretical interpretations of the smoothing methods for the NS loss in KGE and induces a new NS loss, Triplet Adaptive Negative Sampling (TANS), that can cover the characteristics of the conventional smoothing methods. Experimental results of TransE, DistMult, ComplEx, RotatE, HAKE, and HousE on FB15k-237, WN18RR, and YAGO3-10 datasets and their sparser subsets show the soundness of our interpretation and performance improvement by our TANS.

Semantic communication aims to facilitate purposeful information exchange among diverse intelligent entities, including humans, machines, and organisms. It emphasizes precise semantic transmission over data fidelity, striving for meaningful expression while optimizing communication resources for efficient information transfer. Nevertheless, extant semantic communication systems face security, privacy, and trust challenges in integrating AI technologies for intelligent communication applications. This paper presents a comprehensive survey of security and privacy threats across various layers of semantic communication systems and discusses state-of-the-art countermeasures within both academic and industry contexts. Finally, we identify critical open issues in this burgeoning field warranting further investigation.

Biometric recognition technology has witnessed widespread integration into daily life due to the growing emphasis on information security. In this domain, multimodal biometrics, which combines multiple biometric traits, has overcome limitations found in unimodal systems like susceptibility to spoof attacks or failure to adapt to changes over time. This paper proposes a novel multimodal biometric recognition system that utilizes deep learning algorithms using iris and palmprint modalities. A pioneering approach is introduced, beginning with the implementation of the novel Modified Firefly Algorithm with L\'evy Flights (MFALF) to optimize the Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm, thereby effectively enhancing image contrast. Subsequently, feature selection is carried out through a unique hybrid of ReliefF and Moth Flame Optimization (MFOR) to extract informative features. For classification, we employ a parallel approach, first introducing a novel Preactivated Inverted ResNet (PIR) architecture, and secondly, harnessing metaheuristics with hybrid of innovative Johnson Flower Pollination Algorithm and Rainfall Optimization Algorithm for fine tuning of the learning rate and dropout parameters of Transfer Learning based DenseNet architecture (JFPA-ROA). Finally, a score-level fusion strategy is implemented to combine the outputs of the two classifiers, providing a robust and accurate multimodal biometric recognition system. The system's performance is assessed based on accuracy, Detection Error Tradeoff (DET) Curve, Equal Error Rate (EER), and Total Training time. The proposed multimodal recognition architecture, tested across CASIA Palmprint, MMU, BMPD, and IIT datasets, achieves 100% recognition accuracy, outperforming unimodal iris and palmprint identification approaches.

Environmental Insights Explorer (EIE) is a Google product that reports aggregate statistics about human mobility, including various methods of transit used by people across roughly 50,000 regions globally. These statistics are used to estimate carbon emissions and provided to policymakers to inform their decisions on transportation policy and infrastructure. Due to the inherent sensitivity of this type of user data, it is crucial that the statistics derived and released from it are computed with appropriate privacy protections. In this work, we use a combination of federated analytics and differential privacy to release these required statistics, while operating under strict error constraints to ensure utility for downstream stakeholders. In this work, we propose a new mechanism that achieves $ \epsilon \approx 2 $-DP while satisfying these strict utility constraints, greatly improving over natural baselines. We believe this mechanism may be of more general interest for the broad class of group-by-sum workloads.

Building Management System (BMS) through a data-driven method always faces data and model scalability issues. We propose a methodology to tackle the scalability challenges associated with the development of data-driven models for BMS by using Large Language Models (LLMs). LLMs' code generation adaptability can enable broader adoption of BMS by "automating the automation," particularly the data handling and data-driven modeling processes. In this paper, we use LLMs to generate code that processes structured data from BMS and build data-driven models for BMS's specific requirements. This eliminates the need for manual data and model development, reducing the time, effort, and cost associated with this process. Our hypothesis is that LLMs can incorporate domain knowledge about data science and BMS into data processing and modeling, ensuring that the data-driven modeling is automated for specific requirements of different building types and control objectives, which also improves accuracy and scalability. We generate a prompt template following the framework of Machine Learning Operations so that the prompts are designed to systematically generate Python code for data-driven modeling. Our case study indicates that bi-sequential prompting under the prompt template can achieve a high success rate of code generation and code accuracy, and significantly reduce human labor costs.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.

北京阿比特科技有限公司