亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Iterative stencils are used widely across the spectrum of High Performance Computing (HPC) applications. Many efforts have been put into optimizing stencil GPU kernels, given the prevalence of GPU-accelerated supercomputers. To improve the data locality, temporal blocking is an optimization that combines a batch of time steps to process them together. Under the observation that GPUs are evolving to resemble CPUs in some aspects, we revisit temporal blocking optimizations for GPUs. We explore how temporal blocking schemes can be adapted to the new features in the recent Nvidia GPUs, including large scratchpad memory, hardware prefetching, and device-wide synchronization. We propose a novel temporal blocking method, EBISU, which champions low device occupancy to drive aggressive deep temporal blocking on large tiles that are executed tile-by-tile. We compare EBISU with state-of-the-art temporal blocking libraries: STENCILGEN and AN5D. We also compare with state-of-the-art stencil auto-tuning tools that are equipped with temporal blocking optimizations: ARTEMIS and DRSTENCIL. Over a wide range of stencil benchmarks, EBISU achieves speedups up to $2.53$x and a geometric mean speedup of $1.49$x over the best state-of-the-art performance in each stencil benchmark.

相關內容

Spectral clustering is one of the most popular unsupervised machine learning methods. Constructing similarity matrix is crucial to this type of method. In most existing works, the similarity matrix is computed once for all or is updated alternatively. However, the former is difficult to reflect comprehensive relationships among data points, and the latter is time-consuming and is even infeasible for large-scale problems. In this work, we propose a restarted clustering framework with self-guiding and block diagonal representation. An advantage of the strategy is that some useful clustering information obtained from previous cycles could be preserved as much as possible. To the best of our knowledge, this is the first work that applies restarting strategy to spectral clustering. The key difference is that we reclassify the samples in each cycle of our method, while they are classified only once in existing methods. To further release the overhead, we introduce a block diagonal representation with Nystr\"{o}m approximation for constructing the similarity matrix. Theoretical results are established to show the rationality of inexact computations in spectral clustering. Comprehensive experiments are performed on some benchmark databases, which show the superiority of our proposed algorithms over many state-of-the-art algorithms for large-scale problems. Specifically, our framework has a potential boost for clustering algorithms and works well even using an initial guess chosen randomly.

The building planar graph reconstruction, a.k.a. footprint reconstruction, which lies in the domain of computer vision and geoinformatics, has been long afflicted with the challenge of redundant parameters in conventional convolutional models. Therefore, in this paper, we proposed an advanced and adaptive shift architecture, namely the Swap operation, which incorporates non-exponential growth parameters while retaining analogous functionalities to integrate local feature spatial information, resembling a high-dimensional convolution operator. The Swap, cross-channel operation, architecture implements the XOR operation to alternately exchange adjacent or diagonal features, and then blends alternating channels through a 1x1 convolution operation to consolidate information from different channels. The SwapNN architecture, on the other hand, incorporates a group-based parameter-sharing mechanism inspired by the convolutional neural network process and thereby significantly reducing the number of parameters. We validated our proposed approach through experiments on the SpaceNet corpus, a publicly available dataset annotated with 2,001 buildings across the cities of Los Angeles, Las Vegas, and Paris. Our results demonstrate the effectiveness of this innovative architecture in building planar graph reconstruction from 2D building images.

In recent years, there is a noteworthy advancement in autonomous drone racing. However, the primary focus is on attaining execution times, while scant attention is given to the challenges of dynamic environments. The high-speed nature of racing scenarios, coupled with the potential for unforeseeable environmental alterations, present stringent requirements for online replanning and its timeliness. For racing in dynamic environments, we propose an online replanning framework with an efficient polynomial trajectory representation. We trade off between aggressive speed and flexible obstacle avoidance based on an optimization approach. Additionally, to ensure safety and precision when crossing intermediate racing waypoints, we formulate the demand as hard constraints during planning. For dynamic obstacles, parallel multi-topology trajectory planning is designed based on engineering considerations to prevent racing time loss due to local optimums. The framework is integrated into a quadrotor system and successfully demonstrated at the DJI Robomaster Intelligent UAV Championship, where it successfully complete the racing track and placed first, finishing in less than half the time of the second-place.

Deploying pre-trained transformer models like BERT on downstream tasks in resource-constrained scenarios is challenging due to their high inference cost, which grows rapidly with input sequence length. In this work, we propose a constraint-aware and ranking-distilled token pruning method ToP, which selectively removes unnecessary tokens as input sequence passes through layers, allowing the model to improve online inference speed while preserving accuracy. ToP overcomes the limitation of inaccurate token importance ranking in the conventional self-attention mechanism through a ranking-distilled token distillation technique, which distills effective token rankings from the final layer of unpruned models to early layers of pruned models. Then, ToP introduces a coarse-to-fine pruning approach that automatically selects the optimal subset of transformer layers and optimizes token pruning decisions within these layers through improved $L_0$ regularization. Extensive experiments on GLUE benchmark and SQuAD tasks demonstrate that ToP outperforms state-of-the-art token pruning and model compression methods with improved accuracy and speedups. ToP reduces the average FLOPs of BERT by 8.1x while achieving competitive accuracy on GLUE, and provides a real latency speedup of up to 7.4x on an Intel CPU.

Convolution is the most expensive operation among neural network operations, thus its performance is critical to the overall performance of neural networks. Commonly used convolution approaches, including general matrix multiplication (GEMM)-based convolution and direct convolution, rely on im2col for data transformation or do not use data transformation at all, respectively. However, the im2col data transformation can lead to at least 2$\times$ memory footprint compared to not using data transformation at all, thus limiting the size of neural network models running on memory-limited systems. Meanwhile, not using data transformation usually performs poorly due to nonconsecutive memory access although it consumes less memory. To solve those problems, we propose a new memory-efficient data transformation algorithm, called im2win. This algorithm refactorizes a row of square or rectangle dot product windows of the input image and flattens unique elements within these windows into a row in the output tensor, which enables consecutive memory access and data reuse, and thus greatly reduces the memory overhead. Furthermore, we propose a high-performance im2win-based convolution algorithm with various optimizations, including vectorization, loop reordering, etc. Our experimental results show that our algorithm reduces the memory overhead by average to 41.6% compared to the PyTorch's convolution implementation based on im2col, and achieves average to 3.6$\times$ and 5.3$\times$ speedup in performance compared to the im2col-based convolution and not using data transformation, respectively.

Serverless computing along with Function-as-a-Service (FaaS) is forming a new computing paradigm that is anticipated to found the next generation of cloud systems. The popularity of this paradigm is due to offering a highly transparent infrastructure that enables user applications to scale in the granularity of their functions. Since these often small and single-purpose functions are managed on shared computing resources behind the scene, a great potential for computational reuse and approximate computing emerges that if unleashed, can remarkably improve the efficiency of serverless cloud systems -- both from the user's QoS and system's (energy consumption and incurred cost) perspectives. Accordingly, the goal of this survey study is to, first, unfold the internal mechanics of serverless computing and, second, explore the scope for efficiency within this paradigm via studying function reuse and approximation approaches and discussing the pros and cons of each one. Next, we outline potential future research directions within this paradigm that can either unlock new use cases or make the paradigm more efficient.

Trends in hardware, the prevalence of the cloud, and the rise of highly demanding applications have ushered an era of specialization that quickly changes how data is processed at scale. These changes are likely to continue and accelerate in the next years as new technologies are adopted and deployed: smart NICs, smart storage, smart memory, disaggregated storage, disaggregated memory, specialized accelerators (GPUS, TPUs, FPGAs), and a wealth of ASICs specifically created to deal with computationally expensive tasks (e.g., cryptography or compression). In this tutorial, we focus on data processing on FPGAs, a technology that has received less attention than, e.g., TPUs or GPUs but that is, however, increasingly being deployed in the cloud for data processing tasks due to the architectural flexibility of FPGAs, along with their ability to process data at line rate, something not possible with other types of processors or accelerators. In the tutorial, we will cover what FPGAs are, their characteristics, their advantages and disadvantages, as well as examples from deployments in the industry and how they are used in various data processing tasks. We will introduce FPGA programming with high-level languages and describe hardware and software resources available to researchers. The tutorial includes case studies borrowed from research done in collaboration with companies that illustrate the potential of FPGAs in data processing and how software and hardware are evolving to take advantage of the possibilities offered by FPGAs. The use cases include: (1) approximated nearest neighbor search, which is relevant to databases and machine learning, (2) remote disaggregated memory, showing how the cloud architecture is evolving and demonstrating the potential for operator offloading and line rate data processing, and (3) recommendation system as an application with tight latency constraints.

Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.

Since deep neural networks were developed, they have made huge contributions to everyday lives. Machine learning provides more rational advice than humans are capable of in almost every aspect of daily life. However, despite this achievement, the design and training of neural networks are still challenging and unpredictable procedures. To lower the technical thresholds for common users, automated hyper-parameter optimization (HPO) has become a popular topic in both academic and industrial areas. This paper provides a review of the most essential topics on HPO. The first section introduces the key hyper-parameters related to model training and structure, and discusses their importance and methods to define the value range. Then, the research focuses on major optimization algorithms and their applicability, covering their efficiency and accuracy especially for deep learning networks. This study next reviews major services and toolkits for HPO, comparing their support for state-of-the-art searching algorithms, feasibility with major deep learning frameworks, and extensibility for new modules designed by users. The paper concludes with problems that exist when HPO is applied to deep learning, a comparison between optimization algorithms, and prominent approaches for model evaluation with limited computational resources.

In this paper, we present an accurate and scalable approach to the face clustering task. We aim at grouping a set of faces by their potential identities. We formulate this task as a link prediction problem: a link exists between two faces if they are of the same identity. The key idea is that we find the local context in the feature space around an instance (face) contains rich information about the linkage relationship between this instance and its neighbors. By constructing sub-graphs around each instance as input data, which depict the local context, we utilize the graph convolution network (GCN) to perform reasoning and infer the likelihood of linkage between pairs in the sub-graphs. Experiments show that our method is more robust to the complex distribution of faces than conventional methods, yielding favorably comparable results to state-of-the-art methods on standard face clustering benchmarks, and is scalable to large datasets. Furthermore, we show that the proposed method does not need the number of clusters as prior, is aware of noises and outliers, and can be extended to a multi-view version for more accurate clustering accuracy.

北京阿比特科技有限公司